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Abstract

The surveillance mission requires aircraft to fly from a starting point through

defended terrain to targets and return to a safe destination (usually the starting point).

The process of selecting such a flight path is known as the Mission Route Planning

(MRP) Problem and is a three-dimensional, multi-criteria (fuel expenditure, time

required, risk taken, priority targeting, goals met, etc.) path search. Planning aircraft

routes involves an elaborate search through numerous possibilities, which can severely

task the resources of the system being used to compute the routes. Operational systems

can take up to a day to arrive at a solution due to the combinatoric nature of the problem.

This delay is not acceptable because timeliness of obtaining surveillance information is

critical in many surveillance missions. Also, the information that the software uses to

solve the MRP may become invalid during computation. An effective and efficient way

of solving the MRP with multiple aircraft and multiple targets is desired. One approach

to finding solutions is to simplify and view the problem as a two-dimensional, minimum

path problem. This' approach also minimizes fuel expenditure, time required, and even

risk taken. The simplified problem is then the Traveling Salesman Problem (TSP).

While the TSP directly relates to the surveillance mission, it also has other

applications. It is the most notorious NP-Complete optimization problem, therefore

advances in finding solutions to it are applicable to all other NP-Complete problems.

Both Particle Swarm Optimization (PSOTSP) and the Ant System (AS) have been

shown to provide good solutions to the TSP. This thesis presents a new algorithm

(PSOAS), a synthesis of PSO and AS. Efficient implementation in C++ and extensive

testing was done to demonstrate the algorithm's effectiveness.
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TRAVELING SALESMAN PROBLEM

FOR

SURVEILLANCE MISSION

USING

PARTICLE SWARM OPTIMIZATION

1 Introduction

1.1 Background

Global Hawk is an Unmanned Combat Air Vehicle (UCAV). Since it is unmanned, it

can be built smaller and thus have a smaller radar signature. Its mission is

reconnaissance / surveillance. It flies at a near-constant height above enemy territory and

gathers data using various sensors (see 7.2.2).

Mission planning for Global Hawk is computationally challenging. In what way do

you fly the Global Hawk over the territory to obtain the data? It is desirable to travel the

shortest path, since that path allows us to obtain the data swiftly, minimize flight time

thus minimizing the possibility of being shot down by enemy fire, as well as consuming

less fuel. Given a set of up to 2000 coordinates (either from earlier satellite or Global

Hawk mission reconnaissance) of the desired targets, mission planning is then easily

mapped to the ever-popular Traveling Salesman Problem (TSP) - a well-known NP-

Complete problem. Unfortunately, complexity increases with the addition of real-world

requirements and constraints. For example, certain targets must be flown over within a

specific time window, or may be optional to visit (with an associated priority/cost

function). Enemy radar, or even mountainous terrain may make certain paths

undesirable. There may be several Global Hawks available to cover the terrain. Which



targets should be assigned to which Global Hawk? Finally, to be able to plan and fly a

three-dimensional path of least cost, current weather conditions and flying specifications

(fuel level, fuel consumption, max speed, turning radius for various speeds) must all be

considered. The Mission Routing Problem (MRP) is defined by the addition of these

factors. See [Harder] for an excellent background review on MRP.

A tiered approach to finding solutions to this multi-objective, multi-layered NP-

Complete problem has been shown to produce good results [Harder]. In such an

approach, many good solutions to a simpler problem (TSP) are further analyzed against

the multi-objective problem (MRP). Thus, the first step in finding a good solution to

MRP is to find good solutions to TSP.

Both Particle Swarm Optimization (PSO_TSP) [Clerc] and the Ant System (AS)

[Dorigo] have been shown to produce good solutions to the TSP. They are modeled after

the way swarms of insects, though individually not very capable, can produce nearly

optimal solutions to highly complex problems. Experiments have shown that ants will

follow a nearly optimal path to food [Beckers]. A new combination algorithm (PSO AS)

inspired by both PSOTSP and AS is developed.

1.2 Approach

A straightforward, scientific approach is applied. The problem domain is analyzed

(see 2.2) along with current attempts at finding solutions (see Appendix A). The

algorithm design is presented at a high level (see 2.2.4) and low level (detailed) (see

A. 10.2). The algorithm implementation is then presented [see Chapter 3]. Experimental

tests and analysis are conducted for the purpose of improving performance and

comparing to current attempts at solution [see Chapter 4 and 5].
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Specifically, this research investigation consists of the following tasks:

" Analyze the problem domain

* Alter the PSOTSP code to utilize the MPICH implementation of the Message

Passing Interface (MPI) as a means of communication between the processors.

Implement it on a parallel computational platform to asses this approach

" Alter PSOTSP to accept and be able to use a wide variety of [TSPLIB] formatted

problems. Internally, the code was written to use a full matrix representation, but

[TSPLIB] problems come in full matrix, upper diagonal matrix, lower diagonal matrix,

and Euclidiean format. To implement the Euclidean format, change the coordinate

system from a geocentric format expressed in degree, minute, second notation with

Latitude and Longitude values to a matrix of associated path cost between

coordinates.

" Test and analyze the parallel PSOTSP code

* Implement a new algorithm (PSOAS) based on both PSOTSP and AS. PSOAS

has the following features (see Chapter 3 for greater detail):

* Variable (settable) parameters:

" Size of swarm, neighborhood

" Amount of global trust, local trust, and default trust

* Number of iterations before "re-hope"

" Various Swarm initialization, moving, hill-climbing, and re-hope methods

* Greedy

* Re-Insert

" Opt2-3

3



" Lin-Kernighan

* Inver-Over

" Ant System

" Random

* Either array or linked-list data structures

* Tune the algorithm with respect to all of the features

" Test PSOAS to obtain performance metrics (speed and quality of solution) and

compare it against currently used methods to determine efficiency and effectiveness.

This research effort includes design of experiments, results of the experiments, and

qualitative and quantitative analysis. Conclusions and recommendations based on the

qualitative and quantitative data analysis are presented. Additionally, insights for code

improvements and areas for continued research are discussed.

1.3 Thesis Overview

This chapter provides an introduction to the surveillance mission, TSP domain, the

scope of the thesis investigation, and the approach taken for solving the problem. The

remainder of the thesis consists of seven chapters and six appendices. Chapter II is a

literature review of UCAV research as well as the TSP problem domain and high-level

algorithm domain. Chapter III details the PSOAS algorithm low-level design and

implementation issues. Chapter IV describes the design of experiments. Chapter V is

testing, results, and analysis. Chapter VI includes conclusion remarks and

recommendations for future effort.

4



Appendix A gives state-of-the-art attempts at finding solutions (heuristic and

stochastic) including a background review of PSOTSP (brief), AS, and Lin-Kernighan.

Appendix B gives an overview of Evolutionary Computation and discusses high-level

design considerations of PSOAS in the context of Evolutionary Computation. Appendix

C gives testing scripts used. Appendix D gives raw data and Excel spreadsheets obtained

from tests. Appendix E and F are papers written concerning PSOTSP and share some

insight on why the new PSOAS algorithm was needed.



2 Literature Review

2.1 Unmanned Combat Air Vehicle (UCAV) Research

In order to logically present the material, we focus on some currently available

hardware (starting with Air Force designed and proceeding to commercially available)

along with its specifications and the mission for which it was designed. We then proceed

with a review of some research articles and a discussion of some of the unique

engineering design issues that UCAVs must address.

2.].] Predator

Figure 1 - Predator

The RQ- 1 Predator was designed for the medium altitude reconnaissance mission. It is

capable of flying 24 to 30 hours. It flies at an upper altitude of 25,000 feet, but usually

flies at the 10-15,000 feet level. It has a cruise speed of 84 mph (70 knots) with an upper

limit of 140 mph (120 knots). It is a fielded product with six systems at a cost of 25

million each in the inventory [see 7.2.1].

2.1.2 Global Hawk

Global Hawk was designed for the high-altitude, long endurance reconnaissance

mission. It is capable of flying a maximum of 40 hours. It flies at an upper altitude of

65,000 feet, and speeds of up to 340 knots. It has flown its first mission in Bosnia,

although not a fielded system. It is scheduled to be fielded in 2001 [see 7.2.2].

6



Figure 2 - Global Hawk on Ground

Figure 3 - Global Hawk Flying
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2.1.3 Dark Star

Dark Star is a stealthy platform designed to perform reconnaissance in a high-threat

environment. It is capable of flying 12 hours. It flies at an altitude above 45,000 feet at

speeds near 250 knots. The project was cancelled for unspecified reasons [see 7.2.3].

Figure 4 - Dark Star

2.1.4 Air Balloons

Figure 5 - Air Balloon
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While Air Balloons may be in the public eye as nothing more than something

appearing at sports events and providing fancy advertising, they have great potential.

Commercial UCAV Air Balloons have been deployed for gathering weather information,

reconnaissance, and when placed in a geo-synchronous flight path, to replace very costly

communication satellite networks [see 7.2.4].

2.1.5 Miniature UCAVs

The Black Widow measures only six inches across and weighs a mere two ounces. It

has a camera for real-time video downlink and flies at speed of up to 43 mph for up to 22

minutes. In a military setting, it could perform specialized reconnaissance. It could

potentially be flown to keep track of a military target of interest [see 7.2.5].

2.1.6 Use and Design Research

Since UCAVs are air vehicles, they share many of the same issues as manned air

vehicles. Research associated with UCAVs include scheduling, routing, using Tabu

Search to solve the TSP [Harder, Kinney], and using A* in a parallel implementation to

perform route planning [Sezer]. While these works are associated with UCAVs, they

share with this work the characteristic of not being unique to UCAVs. Thus, design

research such as sensor improvement or target recognition may be sponsored and targeted

for use in UCAVs, but are certainly not unique [see 7.2.7].

2.1.7 Unique Engineering Design Issues

Unique software design issues revolve mostly around the coordinated planning, re-

planning, robotic (swarm) control, and autonomous action of each UCAV. There are no

direct UCAV publications in the literature on these subjects (individual companies do

have internal publications), a search of "Agent" and any of the other keywords above will

yield many references.

9



2.2 The Traveling Salesman Problem (TSP) for UCAV

The goal of this investigation is to design, implement, test and analyze an effective

and efficient TSP system that produces solutions in a timely manner using PSO. Given a

list of Earthly coordinates (these are the targets that a UCAV must fly over), minimize

the path taken.

2.2.1 Formal TSP Description

The TSP is defined as follows: Given an n x n distance matrix C = (cij), find a

permutation (7r), that is a member of all possible solutions (;T G Sn) that minimizes the

sum .cr(i);T(i + 1) + c,-(n);z(1) [Lawler]. The Salesman must visit all cities from 1

to n exactly once in such a way to minimize the distance traveled. It builds upon the

Hamilton Circuit Problem (which seeks to find any path where every city is visited

exactly once) by the additional constraint of finding the minimum path. It has direct,

real-world application to routing problems in general (mail or other kinds of delivery),

and as a NP-complete problem [see Garey and Johnson] has indirect relevance to many

other real-world problems. It is undoubtedly the most famous NP-complete problem.

The problem is often classified by characteristics of the distance matrix. In

symmetrical TSPs, cij = cji, thus all values in the matrix are symmetrical about the

diagonal. If it is not symmetric, it is asymmetric. In triangular TSPs (ATSP)

Vi, j, k E C : Cik < C + Cjk, thus given the distances between any three cities, a physical

triangle can be formed to represent those three cities' distances. In Euclidean TSPs,

Vi, je C : cij= cji = V(ai - aj) 2 + (bi - bj) 2 (i.e., the formula for distance between two points),

thus the cities can be mapped to a physical (Euclidean) grid. Even though Euclidean

TSPs are a small portion of all possible TSPs, it is perhaps the most relevant

classification since most real-world problems mapped to the TSP are Euclidean. In fact,

the TSP for the surveillance mission is Euclidean. Euclidean TSPs are both symmetric

and triangular as seen from the definitions, but these characteristics alone do not imply

Euclidean. By taking four Euclidean points and increasing or decreasing one (and only

one) of the costs slightly so that it remains triangular and symmetric, you then have a

10



simple example that cannot be mapped to a Euclidean grid since all distances no longer

meet the requirement. It is also possible for a matrix to be triangular and asymmetric.

Other matrix classifications include Kalmanson, Demidenko, or Supnic conditions, which

are trivially solved by looking at the plot of the points [see Burkard , Deineko,

Demidenko].

Problem complexity is often related to matrix classification. For Kalmanson,

Demidenko, and Supnic matrices, optimal solutions can be generated in polynomial time

because these are "trivial" cases (i.e., for Supnic matrices, all cities are linear). ATSPs

are easier to find good solutions for the same dimensionality because the triangular

relationship is used heuristically to produce solutions. Symmetric TSPs are easier than

asymmetric because a multi-city path can be reversed (inverted) without having to

recalculate the path cost. Furthermore, of all possible tours, there are twice as many

solutions (the forward tour and the backward tour), thus only half of the search space

needs to be searched to find the optimal solution. Since they are both symmetric and

triangular, Euclidean TSPs are considerably easier to find good solutions for, yet no

polynomial algorithm has been discovered to find the optimal solution. In fact, Euclidean

TSP alone is NP-Complete [see Young].

The Lin-Kernighan algorithm is currently the most efficient heuristic method for

finding good solutions to the TSP known, but doesn't work as well with asymmetric

TSPs for the reasons discussed previously. The requirement to calculate the cost of a

reverse path (instead of assuming an equal cost) raises the dimensionality of the

algorithm by two (i.e., finding the path-cost of all pairs in the current tour is a O(n)

problem). Perhaps the most efficient stochastic method is the inver-over operator [Tao]

(see A.9), which may produce better solutions than Lin-Kernighan, but requires more

time. It is likewise limited to working well only for symmetric, ATSP. For further

information on TSP, see [Lawler].

2.2.2 Formal Problem Requirements Specification Form

Athough similar to the TSP description, this table lists the real-world problem

requirements. The major difference between them is that the Domain of the problem is a

list of Earthly coordinates instead of a cost matrix.

11



Solution Space Size: O(N!) where N is the number of coordinates
Domains: Di: (C) - a list of coordinates (x,y)

Do: (C') - an ordered permutation of C such that the total
distance of the Hamiltonian cycle is minimized

Objective Function: Min c= I dij where di3 is the physical distance between adjacent
elements of C'

Candidates: C' is an ordered permutation of C
Selection Function: Always True. Normally this would be concerned with if C' is in

fact a Hamiltonian cycle, but since UCAVs are a flying vehicle
we thus have a totally connected graph, and all ordered
permutations of C are Hamiltonian cycles.

Feasibility Function: Always True. Normally this would be concerned with if a
Hamiltonian cycle exists, but since UCAVs are a flying vehicle
we thus have a totally connected graph, and all ordered
permutations of C are Hamiltonian cycles.

Solution Function: C' is an ordered permutation of C and Min c= Y dij where dij is
the physical distance between adjacent elements of C'

Table 1 - Formalized Table of the Problem Domain

2.2.3 Formal Algorithm Specification Form for PSO solving TSP

This table describes the specifications for any PSO algorithm (including PSOTSP and

PSOAS discussed in this work) used to solve TSP.

Solution Space Size: O(N!) where N is the number of coordinates
Search Space Size: O(I*N) where I is the number of iterations. Since PSO is

stochastic in nature, it searches a portion of the search space. The
portion that it searches is determined by a parameter set by the
user of the algorithm. The quality of the result depends on the
number of iterations used.

Domains: Di: (Dij) - A square matrix representing the distances between
cities i and j.
Do: (C') - an ordered permutation of the indices of D such that the
total distance of the Hamiltonian cycle is minimized

Objective Function: Min c= I dij where dij is the physical distance between adjacent
elements of C'

Candidates: C' is an ordered permutation of the indices of D. Candidates are
referred to as "positions".

Selection Function: I(C',V): where C' is a position or solution and V is a "velocity" or
list of permutation steps
O(C',V,CB',VB): where CB' is the best position found so far and
VB is a list of permutation steps to transform C' to CB'

Feasibility Function: Always True. Normally this would be concerned with if a
Hamiltonian cycle exists, but since we are dealing with a flying
vehicle we thus have a totally connected graph, and all ordered
permutations of the indices of D are Hamiltonian cycles.

Solution Function: C' is an ordered permutation of C and Min c= I dij where dij is the
physical distance between adjacent elements of C'

Table 2 - Formalized Table of the PSO for TSP Algorithm
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2.2.4 Mapping the Algorithm to the Problem

There is not a direct data structure mapping from the algorithm domain to the

problem domain. In order to produce a mapping of the input of the problem to the input

of the algorithm, the distance between coordinates is calculated and a symmetrical matrix

representing dij is produced and used in the algorithm. This mapping of inputs is O(n 2) -

the number of operations needed to fill the square matrix. For utput, there is a direct

mapping 0(1) from the "city numbers" in the sequence of the tour to the original

coordinates using the city number as an index to determine the coordinates.
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3 Proposed Algorithm for Finding Solutions to the TSP

This chapter presents the PSOAS algorithm. From a high level, it is the same as

PSOTSP (see Appendix A.10.2). The Swarm is initialized, then moves and hopefully

improves with each iteration. If there is no improvement after several iterations, a "no-

hope" or "re-hope" portion of code is executed and the Swarm is moved for more

iterations. When there is no improvement and all "re-hope" methods are exhausted, the

algorithm ends.

3.1 PSOAS Implementation

PSOAS is an object oriented C++ program. The objects in the code are Swarm,

Particle, Velocity, and Position. It is a layered, hierarchical architecture. The Swarm

contains an array of Particles. Each Particle contains both a Position and a Velocity.

Each Position contains an array (or linked list) of both the current position and the best

position found. To facilitate testing, all input variable parameters are read from a text

file. All of the variations discussed in this section are configurable by the input text file.

3.2 Moving the Swarm

Because of the hierarchical nature, most of the "work" is done in objects lower than

the Swarm. To move the Swarm, simply move each Particle. To move the Particle, just

successively select each city and move them into the Position. Perhaps the largest and

most complex section of code is the decision making process. This is the heart and soul

of the algorithm, and there are many different ways to move the Swarm.

3.2.1 Permutations

The many "Move" variations can be subdivided into permutations and "tour

building". Permutations take a completed tour (usually the current Position) and re-order

it in some way. Often, permutations are hill-climbing in nature, making minor changes

and improvements in incremental steps. The permutation operators are City-Swapping,

Re-Insert, 2-Opt, 3-Opt, Lin-Kernighan, Inver-Over, and Swap. While they function

similar to the algorithms for which they are named, as part of moving the swarm they

only produce a partial result. Whereas these referenced algorithms contain an outer loop

(i.e., for all cities), these operators only perform the inner loop (i.e. for a given city).
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3.2.1.1 City-Swapping

Perform a single iteration of city-swapping (see A.4) and swap two and only two

cities that maximize improvement.

3.2.1.2 Re-Insert
Randomly select a city. Remove it and re-insert it (see A.2) for maximum

improvement.

3.2.1.3 2-Opt and 3-Opt
Perform the cuts (2 or 3) and associated inversion/re-joining (see A.5 and A.6) for

maximum improvement. Only a single step-improvement is performed.

3.2.1.4 Inver-Over
Perform a single inversion of a segment. The starting city is chosen randomly and the

adjoining city is chosen via the Inver-Over algorithm (see A.9). This operator "mates"

the local best Position and the local best position of a randomly selected Position in the

Swarm. When the neighborhood size is zero, the local best position is the personal best

and the operator performs as described in A.9. A configurable variation of this operator

is to mate the local best and the global best (instead of a randomly selected) Position.

3.2.1.5 Lin-Kernighan
Perform a single variable r-Opt cut as per A.7. Two or more cuts are performed and

the associated segments are re-joined in such a way for maximal improvement.

3.2.1.6 Swap
Two cities in the given Position are randomly selected to exchange places. This

particular operator is not a hill-climber, it is more of a mutation operator.

3.2.2 Tour Building

Unlike the above methods of moving the Swarm, these methods build the Position

city-by-city. Although sometimes classified as hill-climbers, they may be better

classified as "hill-jumpers". They typically combine information from two separate

Particles in an attempt to use good information to create a better individual. If the two

individuals are on the same hill, the result is likely hill-climbing. If the two individuals

are each at the top of their own hill, the result is hopefully a different hill that reaches

even higher. The tour building operators are PSOAS, AS, Greedy, Insert, and Random.

3.2.2.1 The PSOAS Primary Means of Motion
This algorithm combines the ideas presented in Appendix A. As in AS (see A.8), the

particles are moved in a step-by-step process to create a tour. Unlike AS, a table of
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pheromone levels is not kept. Instead, choices are based on the global best particle and

the local best particle as in PSOTSP (see A. 10). In fact, the algorithm is identical to that

presented for PSOTSP (see A. 10.2), but the meaning behind applying the equations in

step 2 alters the way the algorithm performs this step. When a Particle is in a given city,

it generates a random percentage. This percentage determines if the particle attempts to

follow the global best, the local best, or takes a pseudo-random path based on the

particle's position before commencing a new tour. If the global best is chosen, the cities

in the global best (adjacent to the city the particle is currently in) become the first choice.

In the case of asymmetric problems only one choice is allowed. If the global best choices

are available (i.e., they have not yet been visited in this tour), one is chosen at random

and the particle proceeds to that city. If there is no available global choice or if local best

is selected, the local best position is used to determine possible choices in the same way

as the global best was as outlined. If the local best choices are not available, or if the

"default" method is chosen, the most recently visited city (last if possible) from the

Particle's current position that has not yet been visited is chosen. Other configurable

"default" methods are available and explained in 3.2.4.

3.2.2.1.1 Definition of Equation 2 and Equation 3 Terms

Equation 2 and Equation 3 define PSO and require the use of the global and local best

in the search process. While PSOAS uses these equations, the following redefinition of

terms is required to describe the new algorithm (see also pg 61):

1) V,,l - The particle's new velocity for the next generation. A summation of step-by-step choices that
generates a new position.

2) C1 - A probability of selecting to use information of the prior tour in creating the new tour. A
measure of how much the particle "trusts" its own exploration.

3) Vt - The particle's current velocity. A particle's velocity and position contain redundant information.
4) e - denotes local choices made based on the probabilities. C1 + C2 + C3 = 100%.
5) C2 - A probability of selecting to use information of the neighborhood best. A measure of how much a

particle "trusts" its neighborhood best.
6) Pig,t - The neighborhood (from i to g) best position. Also known as "local" best.
7) "-" - The difference of two positions is the velocity that will transform the second position into the

first position. This velocity is equivalent to the first position, thus Pigt -Xt = Vig,t.

8) X, - The current position
9) C3 - A probability of selecting to use information of the global best. A measure of how much a

particle "trusts" its global best.
10) Pvgt- The global best position
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11) "+" - The transformation of a position using the velocity (yields a position). Since the velocity
contains redundant information with the position, this step is inherent.

12) X,+1 - The particle's new "moved" position. The position of the next generation.

3.2.2.2 Example: Moving a Particle

Let's look at an example to illustrate how PSOAS works.

Given a TSP problem where:

X, ={2,4,6,5,3,7,1}
Pvg,t f{3,7,6,4,5,1,2}
Pig,= {7,6,2,3,5,4, }
C1 = 10%
C 2 = 10%

C 3 = 80%
Random numbers generated = {60, 82, 87, 26, 94}

Xt~l= {1,2,3,5,4,7,6}

Current Position Global Best

3 3 ,, Start

Start 2 5 2 5
4 4

I 6 7 6 <7

Figure 6 - X t  Figure 7 - Pvg,t

Local Best Step 1

24 4

7 Start I (07

Or6 Start66 06

Figure 8 - Pig,t Figure 9 - Step 1

Step 1 (Figure 9): The default method is always used to select the starting city, thus

city 1 is chosen since it is the last city in Xt.
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Step 2 Step 3
Local path

Chose pat Global path

Chosen path 245

Start I 7 Start I Default path 7

6 @6
Local path

Figure 10 - Step 2 Figure 11 - Step 3

Step 2 (Figure 10): Since 60 is less than C3 , the global information is used. City 2 is

chosen since it follows city 1 in the global position. If the problem were symmetrical,

city 5 may have been chosen instead since it precedes city 1.

Step 3 (Figure 11): Since 82 is greater than C3 but less than C3 + C2, the local

information is used. City 3 is chosen since it follows city 2 in the local position. When

both the global and local positions contain the same paths, the probability of continuing

to follow that path is equal to C3 + C2.

Step 4 Step 5
Local path

hosen path Local path

2 5 25 4
4 4

pGlobal path Chosen path

Start I Default ath 7 Start 1 7

@ 6 @6 Default path

Figure 12 - Step 4 Figure 13 - Step 5

Step 4 (Figure 12): Since 87 is greater than C3 but less than C3 + C2, the local

information is used, City 5 is chosen since it follows city 3 in the local position.

Step 5 (Figure 13): Since 26 is less than C3 , the global information is used. City 1

follows city 5 in the global, but cannot be chosen since it has already been included in the

tour (Step 1). We the;refore attempt to use the local information. City 4 is chosen since it

follows city 5 in the local position. If a local position's information cannot be used
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because it has already been included in the tour, no attempt is made to use the global

information. Rather, the default information is used. When local information is used, the

probability of continuing the path when the global information has already been included

in the tour is equal to C3 + C2, thus greatly increasing the chances of using the local

information.

Step 6 Step 7

3 3

Global path

2 5 42 .5

Chosen pat Default path

Start I Local path 7 Start I Chosen path 7

6 Completing
the tour

Figure 14 - Step 6 Figure 15 - Step 7; Xt+1

Step 6 (Figure 14): Since 94 is greater than C3 + C2, the prior tour information or

default is used. City 7 is chosen since it is the last in the list that has not already been

included in the tour. City 1 was included in Step 1.

Step 7 (Figure 15): Since city 6 is the only city which has not been included in the

tour, it is selected.

While the example demonstrates finding the global optimal solution, such is not

necessarily the case. The new tour is built from Particles that have survived, so the new

tour is also likely to be good.

3.2.2.3 Ant System (see A.8)

This was actually the first means of moving the Swarm written into code, but poor

performance drove the development of other methods. Under this method, the "Velocity"

of each Particle is a table analogous to a pheromone table. A tour is constructed by first

randomly choosing either to follow the global best, the local best, or the current Particle.

Then, using the selected Velocity, probabilities for visiting cities not added in the tour are

generated in a "roulette" method. Paths that have higher Velocity will also have higher

probability of being selected. After tours have been constructed, those Particles with

fitness values greater than or equal to the median are "rewarded" and adjust their

19



respective Velocities by increasing those values along the links in the tour. Those with

fitness values less than the median are "punished" and decrease those values along the

links in the tour.

Preliminary testing show this method to be rather slow and that it does not converge

to a good quality of solution very well. Thus, to improve convergence, a single "global"

Velocity replaced the individual Velocities. It contains the combined information, thus is

updated as above for each Particle. Under this variation, all "Velocities" are identical, so

tours are created using only one Velocity. The code supports both variants. See A.8 for

details on AS.

3.2.2.4 Greedy
Starting with the last city in the current tour, perform the greedy algorithm (see A. 1).

3.2.2.5 Insert
Perform the insert algorithm (see A.2) using the current tour as the order of selection

of cities instead of randomly selecting cities.

3.2.2.6 Random
Randomly select a city not in the current tour and add it to the tour. Continue until all

cities are added.

3.2.3 Random Choice of Method

Not to be confused with random, this option randomly selects for each Particle one of

the above permutation or tour-building methods excluding AS. The book-keeping

involved with updating the Velocity table (regardless of operator choice) made AS

unwieldy to include.

3.2.4 The Default Selection Method in the PSOAS Operator

While the selection method explained in the example (see 3.2.2.2) describes

defaulting to the last city available that was visited in the prior tour, there are many other

configurable options. The PSOAS operator is tour building, so greedy, insert, random,

and random choice are also available as default methods. AS is not available as a default

method due to the inefficiency of maintaining the Velocity discussed above. Random
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choice, in this case, selects one of the other available default methods every time the

default method is used.

3.3 Initialization Methods

Of course, before a Particle ever moves it must be initialized. The initialization

method is configurable for the Swarm (all Particles are initialized with the same method).

Because of good design, the code to initialize them is the same as that to move them. The

only difference is the hill-climbing portions which continuously perform the routine until

no more improvement can be realized, thus completely agreeing with the appropriate

algorithm. In other words, the "outer-loop" is also performed (see 3.2.1 regarding outer

loop on pg 14). The available initialization methods are random (see 3.2.2.6), insert (see

3.2.2.5), re-insert (see 3.2.1.2), greedy (see 3.2.2.4), city-swapping (see 3.2.1.1), 2 or 3-

Opt (see 3.2.1.3), Lin-Kernighan (see 3.2.1.5), and random choice (see 3.2.3).

3.4 Hill-Climbing after Moving

After moving the Swarm but before evaluating, it may be profitable to perform some

hill-climbing. With efficient design, this is simply just moving the Swarm again. With

the exclusion of AS, all methods of moving the Swarm (see 3.2) are available for hill-

climbing after moving. While it is intended that those algorithms designated as hill-

climbing be executed at this point, any of the options (or none) may be used.

3.5 Re-hope methods

If the Swarm has moved without any change in the global best Position for a

(configurable) number of iterations, we assume that the Swarm has "converged". This

step is used to allow the Swarm to explore even more. Approaches include hill-climbing,

re-initialization, and dynamic parameter adjusting.

The hill-climbing approach attempts to find a superior solution by performing one of

the hill-climbing algorithms discussed previously. Such hill-climbing is done either on

the entire Swarm, or on just the global best Position. If a superior solution is found,

moving the Swarm searches a different local area since it now has new information.

Re-initialization affects all particles with the exception of the global best. After re-

initializing, searching is commenced anew. The goal of this approach is to let the

21



particles find new local best solutions, and possibly in the process find a new global best

as they re-converge.

Dynamic parameter adjusting alters the parameters to encourage more exploration or

more exploitation. For example, if the percentage for global best (C3) is 95%, we might

be doing too much exploitation and not enough exploration. This percentage could be

lowered to 90% (with perhaps the default (Cl) gaining 5%). Now, as the search

continues there will be more exploration. This method can be applied many times. For

every 50 iterations a new solution is not found, the parameter could be adjusted another

5% until a threshold is reached (say 60%). If, on the other hand, a new solution is

reached, the parameters are reset to their original values. Many parameters including

Swarm moving methods and hill-climbing methods can be adjusted. With the exception

of parameter adjusting, Re-hope methods are again moving the Swarm (see 3.2) and all of

the same options may be used.

Re-hope methods are also nested. For example, perform parameter adjusting until the

threshold is reached, then perform hill-climbing (and reset parameters). If hill-climbing

fails, try re-initializing. If searching after re-initializing fails.., the program ends.

3.6 Summary

PSOAS is functionally complex, yet structurally simplistic. It has the same high-level

structure as any PSO algorithm: (1) the Swarm is initialized (and initially evaluated),

(2) followed by hill-climbing and evaluation, (3) if progress is not seen after several

iterations, some Re-hope method(s) are used and the algorithm continues per steps (2),

(4) After all re-hope methods are exhausted, the Swarm exits and reports results.

While it inherits the structure from PSO, it differs in that the manner of moving the

Swarm. PSOAS ises a tour-building process rather than a permutation (see 3.2.2.1).

Even though this tour building process was inspired by AS, it is nevertheless also a valid

feature of PSO because it uses the information gleaned from prior successful Particles

(the global and local best) as a meta-heuristic to guide the building process rather than the

pheromone tables of AS.
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4 Design of Experiments

The goal of this thesis is to produce a better algorithm and this section is concerned

with tests that compare PSOAS to an existing algorithm (or "enhancements" to PSOAS

such as parameter tuning). What does the term "better" mean and how do we know if the

goal is met? There are several ways an algorithm can be "better". The primary metrics

of performance are quality of solution (effectiveness), and speed (efficiency) [Barr],

however it is rare that an algorithm always is more effective and efficient for all

classification of problems (robustness) [Wolpert (NFL)]. Thus, a well-designed

experiment must gather data for a variety of problem classes. The questions we are

attempting to answer are: 1) How good is the final solution? 2) How fast did it arrive at

the final solution? 3) Does it perform consistently on a wide range of problems? 4) How

does PSOAS compare to other algorithms?

We start with considerations that apply generally to all tests conducted such as

hardware used, test problems used, what data is collected and how the data will be used

to answer the questions regarding effectiveness, efficiency, and robustness. We then

move to specific tests conducted.

4.1 General Testing Considerations

Consistency reduces variables. Although this is perhaps obvious, it nevertheless is the

reason why as many tests in this chapter as possible share these common features. The

only exceptions to these common testing considerations are those tests conducted for the

purpose of comparison to published results (see 4.2.2.13 and 4.2.2.14). In such cases, the

tests are designed to meet the same criteria as that used to produce the published results.

4.1.1 TSP Standard Test Suite

[TSPLIB] is a widely used suite of problems specifically for the TSP. As such, it

allows comparison between published results. In fact, some of the tests conducted are

performed on the same test problems as that used to produce the published results. It is

comprised of many problems with various numbers of cities, the solutions to which are

known. It includes both symmetric and asymmetric problems.
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Another common testing method (not used in this thesis) is random generation of

problems. While this method presumably creates problems without specific bias (as long

as several are created and tested), its problems include a lack of known solution and the

unavailability of the problem for other researchers.

4.1.2 Complexity and Classification of TSP Problem

TSP is O(n!), hence problem complexity increases with the number of cities. Tests

are conducted with four problems from [TSPLIB] in the following classifications: 1)

Symmetric Small (100 -200 cities), 2) Symmetric Medium (201-500 cities), 3)

Symmetric Large (501-1000 cities), 4) Symmetric Extra Large (>1001 cities), 5)

Asymmetric Small (50-200 cities), and 6) Asymmetric Large (>200 cities). Problem

sizes smaller than these are easily and quickly solved. Also, since asymmetric problems

are more complex than symmetric problems, asymmetric problems of greater than 600

cities do not exist in [TSPLIB]. In fact, the asymmetric problems selected are the eight

largest problems in the library and the only ones that fit the category. The individual

categories were chosen arbitrarily, but with the intent to adequately represent the

problems contained in [TSPLIB].

4.1.3 Collection of Data

PSOAS is compared to PSO_TSP, Lin-Kernighan, AS, and Inver-Over. Therefore,

ten runs (for statistical accuracy) for each algorithm are executed for each problem in

each of the symmetric classifications. These tests are performed to obtain performance

baseline data used for qualitative analysis.

PSOAS also has several parameters (how much to "trust" local, global or default

method, and what default method to use) which must be "tuned" or adjusted to find the

best parameters for quality of solution, speed, and robustness. For these tests, three

(smaller) symmetric TSP problems (d198.tsp, si535.tsp, u724.tsp) are executed for ten

runs with each varying tunable parameter. The shear numbers of tests required for tuning

prohibits the use of a wide variety of test problems. By keeping the problem set and size

small, each test completed within a four day period.
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4.1.4 Data Reduction/Presentation

Raw data collected for each run of all tests is the fitness value of the best member in

the population (Swarm), the time required (after problem loading and initialization) to

find the best fitness value, and the total number of iterations (i.e., how many times we

moved the Swarm) before termination. The raw data represents the results of over 2000

individual runs of the algorithm and required over 1000 CPU run-time hours to collect.

To make it comprehensible, average percentage away from optimal solution and average

time to solution for all runs of a problem is calculated and charted. This gives a graphical

view of algorithm performance for each test. Associated standard deviations are also

calculated for all problems (contained in spreadsheets) and displayed for algorithm

comparison purposes. Use of standard deviation, median, maximum or minimum

information when comparing two algorithms with unknown distribution gives inaccurate

results. They are included and displayed for "intuitive" visual purposes only. When two

algorithms are compared, a [Kruskal-Wallis Test] (which does not assume a normal

distribution) is performed for hypothesis testing.

4.2 Individual Test Specifics

Testing is performed either to obtain baseline data, perform parameter tuning of

PSOAS, or compare the tuned operation of PSOAS to baseline data or published

results. Since we desire to know how PSOAS compares with other algorithms, we

perform baselines of each algorithm (PSOAS, LK, AS, Inver-Over). In these baselines,

we use consistent Swarm size and ending criteria. We also tune PSOAS for optimal

performance with respect to quality of solution and speed of solution. Finally, we

perform runs that demonstrate the operation of PSOAS after it has been tuned. All test-

script details (including settable parameters not discussed) are found in [Appendix C -

Testing Scripts].
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4.2.1 Baseline Data

Since we want to know how PSOAS compares with other algorithms, we perform

baselines of each algorithm, (LK, PSOAS, AS, Inver-Over). In these various baselines,

the Swarm size and the ending criteria are the same.

4.2.1.1 Experiment 1 - LK Baseline
LK (see A.7) is the most effective heuristic algorithm currently known for TSP

[Lawler]. It is a hill-climber in the sense that it is a many-to-one mapping of all possible

candidate solutions to a subset of all possible candidate solutions. It also has the

desirable property that the fitness value of the mapped candidate is guaranteed to be

strictly lower than all other candidates that map to it. Thus, it is an ideal hill-climbing

operation.

It is also deterministic. Performance of LK is often demonstrated by taking a single

potential candidate (usually the tour { 1,2,3,4, . .}) and executing LK while measuring

the time required to produce the solution. The quality of this single data point is then

used to characterize the algorithm. Such analysis and comparison between LK and a

non-deterministic algorithm produces claims such as "Lin-Kernighan algorithm takes a

fraction of time necessary for our algorithm. However, the precision of results is much

lower . . . If Lin-Kernighan algorithm was run for the same time as our evolutionary

system, probably it would win the competition easily. [Tao]"

In order to produce a competition where the results can be fairly compared, we perform

a baseline on a version of LK that is given the same stopping criteria as PSOAS and all

other baselines as well. For each generation, 100 randomly generated candidates are

improved by LK. The lowest fitness value of the current generation is compared to the

lowest fitness value of all prior generations. If the new generation produces a lower

fitness value, this value and the accumulated CPU time required to produce the value is

retained. When six consecutive generations have occurred without any improvement in

fitness value, the program reports results of best fitness value, CPU time used at the time

of discovering the best solution, and total number of generations (including the six

without any improvement).
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4.2.1.2 Experiment 2 - PSOAS Baseline
The PSOAS baseline has a Swarm size of 100 and a neighborhood size of ten. It

"trusts" the local and global best solutions 10% each, and the default method 80%. It

uses the default method discussed in (3.2.2.2). It initializes the Swarm using LK, and

performs LK on all and the Positions in the Swarm after the Swarm has been moved (see

Moving the Swarm). The Swarm size and neighborhood size are based on [7.3.3], the

use of LK is discussed in [Appendix B], and the "trust" values are selected arbitrarily.

Tuning the algorithm focuses on finding good "trust" values and examines the Greedy

default method (see 3.2.2.4 and 3.2.4). Ending criteria is discussed in 4.2.1.1.

4.2.1.3 Experiment 3 - AS Baseline

The AS baseline has a Swarm size of 100 and uses the same stopping criteria as other

baselines (see 4.2.1.1). Two baselines are produced. In one, the algorithm works as

described in Appendix A.8. In the other, each "ant" is optimized after each generation

and all are rewarded based on the assumption that all LK optimized tours are good.

4.2.1.4 Experiment 4 - Inver-Over Baseline
Inver-Over uses a population size of 100 and a 2% Over amount as per [Tao]. It

likewise uses the same stopping criteria as other baselines (see 4.2.1.1).

4.2.2 PSOAS Parameter Tuning Tests

We also need to tune PSOAS for optimal performance with respect to quality of

solution and speed of solution before we can compare PSOAS to other baselines. These

tests each use the parameters discussed in the baseline as a starting point (see 4.2.1.2) and

vary a single parameter (or two in the case of percentages where lowering a value means

raising another to maintain 100%) in order to determine the effects of varying the

parameter.

4.2.2.1 Experiment 5 - Course Tuning PSOAS: 10% Default "Trust"
By keeping the d.,fault trust at 10% and varying the global and local trust in 10%

increments {(90,0),(80,10),(70,20), . . .} we compare global and local trust. All other

parameters are the same as the baseline (see 4.2.1.2).
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4.2.2.2 Experiment 6 - Course Tuning PSOAS: 10% Local "Trust"
By keeping the local trust at 10% and varying the global and default trust in 10%

increments {(90,0),(80,10),(70,20), . . we compare global and default trust. All other

parameters are the same as the baseline (see 4.2.1.2).

4.2.2.3 Experiment 7 - Greedy PSOAS: 10% Default "Trust"
This experiment is the same as 4.2.2.1 with the exception of using the Greedy default

method to determine the effects of using the Greedy method.

4.2.2.4 Experiment 8 - Greedy PSOAS: 10% Local "Trust"
This experiment is the same as 4.2.2.2 with the exception of using the Greedy default

method to determine the effects of using the Greedy method.

4.2.2.5 Experiment 9 - Fine Tuning PSO AS: 90% Global "Trust"
By keeping the global trust at 90% and varying the local and default trust in 1%

increments {(90,10,0),(90,9,1),(90,8,2), . . .} we compare local and default trust. The

90% value for global trust is based on experiments 5 and 6. All other parameters are the

same as the baseline (see 4.2.1.2).

4.2.2.6 Experiment 10 - Fine Tuning PSO AS: 85,95% Global "Trust"
This is the same as 4.2.2.5, but varying the values for global trust in order to see how

fine-tuning adjustments to this parameter affects performance.

4.2.2.7 Experiment 11 - Greedy PSOAS: 85,90,95 Global "Trust"
This is the same as 4.2.2.6, but using the Greedy default method.

4.2.2.8 Experiment 12 - PSOAS Tuned for Quality of Solution
Using prior results, the baseline PSOAS is tuned with 2% default, 8% local, 90%

global "trust". The Greedy default method is used. This "tuned" version is then used for

comparison against other algorithms.

4.2.2.9 Experiment 13 - PSOAS Tuned for Speed
Using prior results, the baseline PSOAS is tuned with 2% default, 8% local, 90%

global "trust". This "tuned" version is then used for comparison against other algorithms.

4.2.2.10 Experiment 14 - PSOAS Tuned for Robustness
Using prior results, the baseline PSOAS is tuned with 10% default, 45% local, 45%

global "trust". This "tuned" version is then used for comparison against other algorithms.
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4.2.2.11 Experiment 15 - Parallelization of PSOTSP

While this experiment may seem out of place here, it is of historical significance. The

results of this experiment drove the creation of PSOAS. Rather than describe the

experiment here, a full unpublished paper is included in Appendix E.

4.2.2.12 Experiment 16 - PSOTSP vs PSOAS

While not strictly a comparison between the two algorithms, the results do support the

claim that PSOAS is superior. Rather than describe the experiment here, a full paper

accepted for publication is included in Appendix F.

4.2.2.13 Experiment 17 -Tuned PSOAS vs Published Results of Inver-Over
The tuned for quality of solution PSOAS is executed with the same stopping criteria

as that published by [Tao]. Instead of six generations without an improvement, we use

ten generations without an improvement. We also use all problems of greater than 100

cities with published results that are in [TSPLIB] (there were four). In this way, we

compare the result (quality of solution only) with the published results of Inver-Over.

4.2.2.14 Experiment 18 -Tuned PSOAS vs AFIT Research

The tuned for quality of solution PSOAS executed as per 4.2.2.8 on standard

problems used to test Reactive Tabu [Harder, Kinney, O'Rourke]. It is also executed vs

the same problems used to test [Hall].

4.3 Summary of Tests

The following table helps summarize the tests:

Test Purpose

1 Baseline of LK used in comparison analysis against PSOAS.

2 Baseline of PSOAS used for a starting point in the parameter tuning process.

3 Baseline of AS used in comparison analysis against PSOAS.

4 Baseline of Inver-Over used in comparison analysis against PSOAS.

5 Course comparison of varying global vs local trust in 10% increments.

Default value maintained constant at 10%

29



6 Course comparison of varying global vs default trust in 10% increments.

Local value maintained constant at 10%.

7 Course comparison of varying global vs local trust in 10% increments while

using the Greedy default method. Observe the effects of using the Greedy

default method.

8 Course comparison of varying global vs default trust in 10% increments

while using the Greedy default method. Observe the effects of using the

Greedy default method.

9 Fine comparison of varying local vs default trust in 1% increments. Global

value maintained constant at 90%.

10 Compare Global values 85% and 95% to data obtained for Global value of

90%.

11 Compare fine-tuned Global values using the Greedy method.

12 Collect performance data for PSOAS tuned for quality of solution. This

data is then used for comparison against other baseline data.

13 Collect performance data for PSOAS tuned for speed. This data is then used

for comparison against other baseline data.

14 Collect performance data for PSOAS tuned for robustness. This data is then

used for comparison against other baseline data.

15 Observe performance of Parallel version of PSOTSP

16 Observe difference in PSO TSP and PSO AS

17 Compare PSOAS with published results of Inver-Over

18 Compare PSOAS with published AFIT results.
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5 Results and Analysis

This chapter presents condensed results of experiments conducted. We strive to assert

that PSOAS is superior to LK, AS, Inver-Over, and other published results. It follows

the same logical progression of experiments outlined in the previous chapter (baselines of

algorithms, tuning of PSOAS, Comparison of PSOAS to other algorithms), but groups

them together when a visual representation of combined results is meaningful.

5.1 Experimentl - LK Baseline, Experiment 2 - PSOAS Baseline

LK Vs PSOAS
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Figure 16 - PSOAS and LK Baseline Solutions

Surprisingly, the baseline PSOAS shown in Figure 16 produced better average

solutions in all cases when compared to LK. For example, at 561 cites, LK has an

average of 8.22 whereas PSOAS has an average of 7.15. While this is certainly

encouraging, it was unexpected. With such a high percentage of default method (80%),

the expectation was for poorer results. With the high default, large numbers of the

current Position are selected. This results in sections of the current Position being

inverted and added to the new Position. The inversion of large portions of a successful

Position account for the good results.
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Detailed information such as error bars depicting standard deviations is not represented

at this time since the PSOAS baseline will not be used for comparison purposes. Such

detail will be added later in this chapter.
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Figure 17 - PSOAS and LK Baseline Average Time (sec)
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Figure 18 - PSOAS and LK Baseline Average Time (sec): Cities < 800

Figure 18 represents the same data as that in Figure 17, but scaling is altered to allow

closer inspection when the number of cities is less than 800. PSO AS produced solutions

in better time in nine of the sixteen cases. In all cases, the time per generation is smaller

for PSOAS, but more time is spent productively finding better solutions (i.e., it takes

more generations to meet the stopping criteria of the test). While this result was

anticipated, it is counter-intuitive. Inspection of the algorithm indicates the only

difference between the two runs is PSOAS must do more work during the tour-building
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step. Both generate the same amount of random numbers (LK to produce the random

Position, and PSOAS to choose which "best" to follow). Both perform LK on each

Position. So how can PSOAS be faster? The savings is realized in the LK portion of

the algorithm. The Position built by PSO AS is closer to optimal than that produced

randomly. Because of this, less work needs to be done to reach the local LK optimal

Position.

While these results are encouraging, it is expected the tuned version shall have even

better results. Comparison analysis follows the tuned tests.

5.2 Experiment 3 - AS Baseline

The AS baseline produces poor results, with solutions typically greater than 200% of

the optimal solution. It takes many more ants to lay down a pheromone trail than was

allowed by this experiment. In an attempt to "fix" this, the algorithm was altered to

perform LK on each Position (as PSOAS does) and lay pheromone for every Position

(on the assumption that all LK produced Positions are "good" and should be rewarded).

The raw data results are in Appendix D.2 and show that AS produces solutions nearly the

same as LK, but requires twice as much time.

5.3 Experiment 4 - Inver-Over Baseline

We attempted to obtain original source code for this algorithm. Unfortunately, the

author could not be reached. We wrote our own source code based on the paper by

[Tao]. Although the paper is plainly written, the resultant version does not re-produce the

results claimed, and the results are quite inferior to LK. Subsequently, we were able to

contact the author and have a version (not the exact one used to produce the paper) that

"should implement the algorithm correctly." It likewise produced results similar to the

code we wrote. The raw data results are in Appendix D.3.
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5.4 Experiment 5 - Course Tuning PSO AS: 10% Default "Trust", Experiment 6 -

Course Tuning PSOAS: 10% Local "Trust"
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Figure 19 - Quality of Solution vs Course Global Percentage (Default =10%)
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Figure 20 - Quality of Solution vs Course Global Percentage (Neighborhood =10%)

The observed trend matches the expected result that a higher global percentage gives a

better quality of solution.
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Figure 21 - Average Percentage from Optimal and Average Time (sec) vs Course Global Percentage
(Default = 10%)

The results for si535.tsp are typical of all experiments conducted. In general, the shape

of the time required curve is a mirror image of the percentage from optimal curve. This

is not surprising since it takes more time to find a better solution.

Default % =10

20 -

i 15 -A--d198
10 -si535

5 -"j -A- u724

0 20 40 60 80 100

Global Percentage

Figure 22 - Time/Generation (sec) vs Course Global Percentage (Default = 10%)
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Neighborhood = 10%
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Figure 23 - Time/Generation (see) vs Course Global Percentage (Neighborhood = 10%)

The curves are convex down, with lower values at the endpoints and higher values in

the middle. The lower values represent a measure of efficiency. Thus, good solutions

(see Figure 19, where the better solutions are produced with high global percentage) are

produced most efficiently with a high global percentage.

5.5 Experiment 7 - Greedy PSOAS: 10% Default "Trust"
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Figure 24 - Greedy Quality of Solution (Default = 10%)

In general, it appears that the greedy default method produces superior solutions to

non-greedy. An examination of u724.tsp demonstrates some significant exceptions.

When the global percentage is high, the greedy method produces poorer results. When

the global percentage is near 90%, it is unclear which is better. Further testing is done

(see 5.7) to more closely examine the greedy method with a global value near 90%.
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Figure 25 - Greedy Time (sec) vs Global Percentage

Once again, the general case is that the greedy default method is superior and produces

solutions faster as seen by the u724.tsp and si353.tst curves on the left being lower than

their associated curves on the right.

These results are significant with respect to robustness. The "flatness" of the greedy

curves indicates that with a global percentage near the middle (45%) consistently good

results are obtained rather swiftly. Unfortunately, prior results indicate we desire a high

amount of global percentage for best quality of solution and speed of solution. At the

80-90% global range, results (for both quality and speed) are inconclusive, thus requiring

more fine-grained testing.

5.6 Experiment 8 - Greedy PSOAS: 10% Local "Trust"

Raw data is contained in Appendix D.6. Due to the inconclusive results of Experiment

7 (requiring more testing), analysis of this data is not presented in lieu of presenting the

fine-grained analysis in 5.7.
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5.7 Experiment 9, 10, 11, and 12 - Fine Tuning PSOAS: 85,90,95% Global "Trust"

With or Without Greedy Method
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Figure 26 - Quality of Solution: Fine Tuning Global Trust

Although still not conclusive, we see that without greedy a global value of 85-90%

works best with a value of 95% producing poorer quality of solutions (note how the 95

phi curve is higher than the other curves for dl98,tsp). With greedy we observe that the

curves for 85-95% all produce the same result dependant on the value for default "trust"

(note how the curves all seem identical, but just "shifted over" based on the value of phi).

It is further observed that a value of 2% for default trust produces the best quality of

solution for these tests (note the minimum of greedy u724 at 95 phi is when local

percentage is 3%, hence default percentage is 2%). The sharpness of the u724 curves
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suggests this generalization may not hold in all cases, since other curves may be similarly

shaped but with differing minimum values. We also observe in all cases that greedy

produces superior quality solution (for at least a single point).
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Figure 27 - Time: Fine Tuning Global Trust

Once again we see a strong relationship between the time required and the quality of

solution. Time curves are nearly mirrors of quality of solution curves. We also note that

in general, greedy takes less time, but at the point where the best solution is found it takes

more time. For non-greedy we see the time lower as global percentage increases. This is

expected since quality of solution is likewise poorer.
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Figure 28 - Time(sec)/Generation: Fine Tuning Global Trust

For Greedy, time/generation is always higher than that for non-greedy. This suggests

that non-greedy is more time efficient.

5.8 Experiment 12 - PSOAS Tuned for Quality of Solution

In summary of prior results, best quality of solution is obtained by setting the global

percentage high (85-95%) and using the greedy default method set to 2%. While the

range of global percentage does not affect quality of solution, it does affect average time.

Unfortunately, those results are inconclusive. We therefore select a global percentage of

90% to obtain medium speed performance.
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Figure 29 - LK Vs PSOAS Quality Tuned: Quality of Solution Comparison
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With PSOAS tuned, we get better solutions in all cases when compared to the non-

tuned version. Error bars represent one standard deviation from the average and are

displayed for LK and the tuned version.

The negative value at 225 cities is due to rounding. Optimal solutions published in

TSPLIB for Euclidean problems are found by rounding the distance between all cities.

The values reported are unrounded. This experimental data point brought rounding to

light and the code was written prior to this knowledge.
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Figure 30 - LK Vs PSOAS Quality Tuned: Time(sec)

As noted previously, obtaining better solutions requires more time.

5.9 Experiment 13 - PSOAS Tuned for Speed

In summary of prior results, speed of solution curves mirror quality of solution curves.

In order to attempt to achieve a balance between quality of solution and speed, we looked

at average time per generation and observed that the non-greedy default method gives

lower values. Therefore, to obtain good quality of solution with more efficiency we use

the same values as that in Experiment 12, but without using the greedy method.
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Figure 31 - PSOAS Quality Vs PSOAS Speed: Quality of Solution Comparison

In general, tuning for speed slightly degraded quality of solution. Note that error bars

in all cases overlap suggesting (assuming the data is normally distributed) the results may

not be statistically significant.
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Figure 32 - PSOAS Speed Vs PSOAS Quality Tuned: Time(sec)
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In general, tuning for speed does produce faster results as observed by the lower curve.

Unfortunately, this result is not universal. In places where the speed was slower, the

quality of solution was better (or at least statistically insignificant).

5.9.1 Kruskal-Wallis Test

Hypothesis testing is required to statistically assert that one algorithm (PSOAS tuned

for quality) is better than another (LK). If the data collected were assumed to be

normally distributed data, an F-test or ANOVA test could be performed and the fact that

the standard deviation error bars did not overlap would quickly yield the answer that the

results were statistically different at the 99% confidence level. Since we do not know the

distribution and do not desire to make an assumption, a [Kruskal-Wallis Test] is used.

The formula is:

Equation 1 - Kruskal-Wallis Test

k

H = 12 / n(n + 1) * ( R 2 nI) - 3(n + 1)
J=1 

J

where:
k = number of independent samples (or identical populations)
nj= number of sample observations from the jth population
R= sum of ranks in the sample from the jth population (ranks are assigned by grouping all sample
observations)
n = the total number of observations from the k samples

The H value is a chi-squared distribution. In order for the population members to be

"distinct" and the results to be statistically relevant at the 99% confidence level, an H

value of 6.635 or better must be obtained. In most individual [TSPLIB] problems

executed, the ten PSOAS solutions were all better than the best LK solution. This

results in an H value of 14.29. In only one instance (u159) the best LK solution was

lower than the best PSOAS solution. In this case, the H value is 13.17 (see Appendix

D. 1, Data Sheet #2 for calculation details). Thus, at the 99% confidence level, PSOAS

produces better solutions than LK for all problems tested.
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5.10 Experiment 14 - Parallelization of PSOTSP

Rather than describe the experiment here, a full, unpublished paper is included in

Appendix E. In summary, while the paper demonstrates the parallel system produces

slightly better solutions for the same CPU time vs. a single computer, the results obtained

are less than impressive. Since PSOTSP did not appear to achieve results competitive

with LK, we looked for ways to improve it. PSOAS is the result.

5.11 Experiment 15 - PSOTSP vs PSOAS

Rather than describe the experiment here, a full paper accepted for publication is

included in Appendix F. In summary, the native ability of PSOAS to converge to a

solution without heuristic, hill-climbing (such as LK), or Re-hope methods is explored.

PSOAS natively converges to better solutions than PSOTSP, and does so

approximately 30 times faster. This paper justifies the use of PSOAS.

5.12 Experiment 16 -Tuned PSOAS vs Published Results of Inver-Over

Table 3- Comparison of PSO-AS with Published Results of Inver-Over

Inver-Over PSOAS

Instance Optimum Result Time (sec) Result Time (sec)
EILl0l 629 629.2 7.52 631.4 1.29
LIN105 14379 14379 3.34 14379 0.42
PCB442 50778 51097.5 172.21 51195.3 168.813
PR2392 378032 388095 5366.23 393024.6 19717.9

In all tests, Inver-Over produced better quality of solution than PSOAS. Inver-Over

also produced these solutions in faster time for the two larger problems.

5.13 Experiment 17 -Tuned PSOAS vs AFIT Research

Table 4 - PSOAS vs Published Results of GTTS [Hall]

GTTS PSO
Instance Optimum Result Time (sec) Result Time (sec)
GR17 2085 2181 7.07 2085 0
GR21 2707 2858 42.64 2707 0
GR24 1272 1338 76.61 1272 0
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FR126 937 941 110.67 937 0
GR48 5046 5710 1549.49 5046 0.03
EIL51 426 522 2340.27 426 0.04
BERLIN52 7542 8649 2768.87 7542 0.02
ST70 675 895 11902.25 675 0.05
EIL76 538 675 17856 538 0.11
BR17 39 39 18.8 87 0
FTV35 1473 1620 388.81 1475 0.01
P43 5620 5652 1005.65 5727 0.02

In all cases, PSOAS produced solutions in significantly faster time. Those values

with a zero represent a time smaller than Windows 2000 can report using the clocko

library routine.

PSOAS also produced the global optimal solution for all symmetric problems. The

last three problems are asymmetric, and GTTS produced better solutions for BRI 7 and

P43. While the PSOAS result for BR17 may seem drastically inferior, the nature of the

problem is such that 87 is the second best solution. There are no candidate solutions with

fitness values between 87 and 39.

Raw data results for the problems used in [Harder, Kinney, O'Rourke] are included in

the Appendix (see D.9). A direct comparison is not possible. These prior AFIT theses

test on the TSP with time windows and multiple vehicles. As such, the results from these

tests are quite different from using no time windows and only a single vehicle. Results

are provided for future reference only.

5.14 Summary of Results and Analysis

Superior solutions are produced with PSOAS by using a high global percentage (85-

95%) and the greedy method. Not using the greedy method produces slightly poorer

solutions with improved speed, and with a lower time per generation (hence, better

efficiency). Using the greedy method and middle values of global and local trust produce

consistent results (both quality of solution and speed) for a wide range of parameter

values.

PSOAS using the tuned parameters produces better solutions than LK for all problems

tested at the 99% confidence level.
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6 Conclusions and Recommendations

One of the constraints limiting the effectiveness of UCAVs is maximum flight time

without refueling (see 2.1). Any improvement in the efficiency of operation increases the

effectiveness of the UCAV, since it can obtain more data during the same flight time. By

optimizing the planned route, fuel is saved and risk associated with flying over enemy.

terrain is reduced. Since PSOAS is shown to produce better solutions than LK, these

results directly affect the war-fighting capability of UCAVs!

While these results pertain directly to UCAVs, they also apply directly to numerous

unknown works. TSP is the most renown NP-Complete problem, so any improvement in

producing solutions affects all other research and applications of TSP.

6.1 Performance of PSOAS

We can say at the 99% confidence level that the solutions generated by PSOAS for all

problems tested are superior to those generated by LK! Although PSOAS took more

time than LK in the experiments conducted, every solution generated by every single run

of PSOAS was better than all solutions generated by LK. Thus, when LK is given ten

times more time, it still doesn't produce solutions better than a single run of PSOAS.

Although PSOAS took more time than LK for these experiments, if LK is given the

same time (or more), it will not produce better solutions.

PSOAS was also shown to perform significantly better in both speed and quality of

solution on symmetric problems against prior AFIT research of GTTS [Hall].

PSOAS, However, did not outperform published results of Inver-Over. These results

are not reproducible even when using code written by the author. It is desirable to

reproduce the results to study why it obtains good results and perhaps to incorporate the

method into PSOAS.

By outperforming LK and other published results, PSOAS exceeds expectations

objectives of this thesis.
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6.2 Alternatives to PSOAS

The success of PSOAS is based on a tour-building method followed by a hill-

climbing method (LK). The purpose of the tour-building method is to use known good

building blocks to produce likely good candidates that may be on a different hill. Any

improvement to LK will also improve PSOAS. While there may not be a superior hill-

climber than LK (it has stood the test of time), it is likely a better tour-building method

exists. PSOAS defines a particular elitist communication pattern (see Appendix F and

Appendix B.4) and requires the use of global and local best solutions. This step is similar

to the mating selection step in evolutionary computation (see Appendix B.4). Using this

tour-build and hill-climb approach coupled with an established evolutionary computation

technique may provide even better results.

6.3 Tuning of PSOAS

One of the consequences of the No Free Lunch Theorem [Wolpert] is that when an

algorithm is tuned for performance on a specific problem or class of problems, it will

perform less than optimal on other problems. In other words, for every problem there

exists a tuning (or tunings) that produces optimal performance, and this tuning may be

unique for the problem. While the approach taken to tune PSOAS was reasonable, and

observed generalizations are useful, there is no guarantee these tuned parameters will

produce the best performance. Although the "Tuned for Speed" settings did (in general)

produce better times than the "Tuned for Quality of Solution" settings, the savings were

unimpressive and there were instances where the time taken was longer (and the solution

better). It was hoped that similar quality of solutions could be generated in times better

than LK. The tuning process used only "smaller" problems, and thus for smaller

problems the solution is generated faster than LK. Perhaps a tuning exists for larger

problems that will produce good solutions faster, but the tuning process to find those

settings will take a long time (ten executions of the 3k city problem took between twelve

and fifty hours due to the complexity of the problem and depending on the parameters

used).
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6.4 Improvements to PSOAS

While PSOAS does have performance advantages over LK, there is room for

improvement. The version of LK tested and used can be improved. It maps all possible

solutions to points that are guaranteed to be opt2 optimal (see A.5). In other words, if LK

is run, then opt2 is run, the opt2 will make no changes. Other versions exist that

guarantee opt2 and opt3 optimal solutions (thus produce a better quality of solution), but

require more time. Also, versions exist that are highly optimized for speed. Since

PSOAS relies on LK, any improvement to LK also improves PSOAS.

It is also possible that an alternative to LK will yield better results. Reactive Tabu

Search has recently gained recognition in optimizing TSP[O'Rourke].

The data structure used for the tour is an array of integers. Although a linked list of

integers (from list.h) would seem to be a possible improvement since inversions should

only require the change of a few pointers, PSOAS with this modification took three

times longer. Other structures exist for modeling the TSP (graph, heap) and may prove

more efficient.

In this implementation, the lowest level object is a Position. In retrospect, an even

lower level that should be used is the Tour. Most of the methods for Position operate

only on the array containing the Tour. There are also many special cases in the methods

to handle the array boundaries. If a Tour contains an array of integers to represent the

solution, the zero element of the array should contain the last city, the one element the

first city, each subsequent element the city following in the tour, the next to last element

the last city (again) and the last element the first city (again). This duplicity of first and

last city in the tour will greatly reduce special cases, code size, complexity, and speed of

code execution. The cost is that operations that affect these duplicated elements will

need to ensure both are updated.
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A Current Heuristic and Stochastic Approaches To Solution

The TSP has a long history and many heuristic and stochastic methods have been

attempted. The most promising heuristic approaches include greedy, insert, re-insert, city

swapping, 2-opt, r-opt, and Lin-Kernighan. Stochastic methods that have shown promise

include the Ant System and Inver-Over. PSOTSP is a recent, unproven stochastic

method.

A. 1 Greedy Heuristic

The greedy heuristic is a straight-forward, simplistic O(n 3) algorithm. Simply choose

the next city in the tour that is the closest one available as follows:

1) Vi E C, move i into S and remove i from 'S. Pick a starting city.

2) Choose j such that j E 'S : Min(cij ). Find the city that is "closest" to the most

recently added city.

3) Repeat step 2 until there are no more cities to add.

4) Repeat step 1-3 for all starting cities. Each starting city produces a good solution.

The best solution is the resulting solution.

A.2 Insert Heuristic

This is somewhat a greedy, O(n2) heuristic. Randomly select two cities to start the

tour. Randomly select a city not yet in the tour and place it in the tour in such a way to

minimize the current partial tour cost. Continue to select and insert cities until all cities

are inserted.

A. 3 Re-Insert Heuristic
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The Re-Insert heuristic is a straight-forward, simplistic O(n 2) algorithm. It takes a

current solution and cxamines each city individually. A search is conducted to determine

if there is a better location in the tour for the city. If so, it is moved as follows:

1) Vi E C : tempcost = c(i - 1)i + ci(i + 1) - c(i - i)(i + 1i). For all cities in the solution C,

calculate the change in cost of removing the city.

2) Choose j such that j ( C : Min(co - 1)i + cij - co - i)j - tempcost). Find the city where

removing i and re-inserting it after j will result in the lowest cost.

3) If i is not equal to j+l, re-move i and re-insert it afterj.

4) Repeat steps 1-3 for all cities. The resulting tour is the solution.

This is a hill-climbing, deterministic algorithm. The resulting solution depends on the

starting tour.

A. 4 City Swapping Heuristic

The City Swapping heuristic is a O(n 2) algorithm. The goal of this algorithm is to

select two cities in the tour to swap their positions. These two cities are selected based on

being the two cities minimize the tour length as follows:

1) Vi c C : tempcost = ci(i + 1) + c(i - 1)i . For a city in the solution C, calculate the

change in cost of "swapping" this city with...

2) Choose j such that

j E C : Min(cu- 1)i+ cio + i + c(i-1)j + cj(i-1) - CO- 1)j - cjj u+ 1) - tempcost). Find the city

where removing i and swapping it with j will result in the lowest cost.

3) If aj does exist that lowers the cost, swap i andj.

4) Repeat steps !-3 for all cities. The resulting tour is the solution.
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This is a hill-climbing, deterministic algorithm. The resulting solution depends on the

starting tour.

A.5 2-Opt Heuristic

The 2-Opt heuristic is a O(f(n)n2) algorithm. The idea behind it is to make two "cuts"

in the tour, thus creating two separate segments. One of the two segments is then

inverted or reversed and re-joined to the other segment to make a complete tour. Always

choose the two cuts that make the greatest improvement and continue to make cuts and

improve until no further improvement can be realized and the result is the solution. The

f(n) term represents the amount of cuts needed until no further improvement can be

realized. While the value of this function is unknown, clearly the larger the problem size,

the more cuts are needed (on average).

A.6 r-Opt Heuristic

The 2-Opt heuristic is an r-Opt with a value of two. The r-Opt is an O(f(n)nr)

algorithm. The value of r represents the number of cuts performed with each

improvement. In general, the larger the value of r, the more likely it is that the final

solution is optimal. Unfortunately, the complexity also increases with r, so values of r=2

and r=3 are the ones most commonly used.

A. 7 Lin-Kernighan Heuristic

The Lin-Kernighan (LK) heuristic is also referred to as a variable r-Opt and is the

"supreme" heuristic method found to date. It has complexity of O(g(n)n2) where g(n) is

typically larger than f(n) for the 2-Opt. While it operates in speeds near that for the 2-

55



Opt, it produces superior solutions. We are conducting an empirical study to examine

why LK produces better solutions than 2-Opt. LK is as follows:

1) Choose an initial tour.

2) Set G*=0. Select any city as a starting city (e.g., city 1) and consider one of the

edges in the current tour adjacent to this city (e.g., {l,k}) for removal. Set p=l.

3) From the other end of this edge (city k) choose an edge that is not in the current

tour (e.g., {k,I}) such that gi = Cik - Cki > 0. The edge is chosen so that gl is

maximized.

4) Having chosen {1,k} to leave and {k,i} to enter the solution in the previous

iteration, the edge to leave in the pth iteration is uniquely determined. It must be

the one of the two edges currently adjacent to city i such that upon removal the set

of cities remains connected. In this case, {ij } must leave the solution. Note that

adding an edge {j,1} reconstructs a tour. Now G - gl + cij - cjl. Let us suppose

that gi > G* > 0. Increment p by 1.

5) Edge {j,l} is not necessarily the edge chosen to enter the solution at this iteration.

That is, we seek to find city q that maximizes gp Cij - Cjq. Suppose q=m and thus

the edge chosen to enter is {j,m}. Calculate G =I g., and then G * = Gp + Cmn

- cni. Let G* = max{ G, G 2,..., G p}. We increment p and repeat Step 5

unless:

a) no further feasible swaps exist,

b) the current configuration is already a tour,

c) Gp<0,or
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d) Gp < G*.

If one of the above conditions holds, construct the tour associated with the best of {

GlG,...,G; }.

While the above seems quite complex, it is quite easily implemented with a function

and some control code as follows:

int opti;
tour G;
bool flag;

do{
flag = false;
for(int i = 0 ; i < cities; i++)
{
opti = i;
while(opti !=-1)
{

opti = opt2(G,opti);
if(opti != -1)

flag = true;
}

}
}while(flag == true)

opt2(G,opti) finds the two cuts that maximizes improvement with one of the cuts being

an input (opti), performs the inversion of the segment, and returns the "least optimal" of

the two cuts (as per step 5). If no improvement is possible for the given opti cut, it

returns -1. opt2(G,opti) is O(n).

A.8 Ant System

[Dorigo,Stutzle] describe an algorithm inspired by ants that can find solutions to TSP.

In this algorithm, a population of ants creates a tour in a step-by-step process. When an

ant is in a given city, it examines the "pheromone" levels leaving its current city and

going to cities that the ant has not yet visited. The pheromone levels are used to
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determine the probability of the ant traveling to its next city. A higher pheromone level

has a higher probability that the ant chooses that path. After all ants have completed a

tour, the ant with the best fitness value is allowed to lay down pheromone. Variants

typically involve the selection of ants that get to lay pheromone, the types of pheromone

(reward and punishment), and the amount or weighting of pheromone used [7.3.4]. Ant

Colony Optimization (ACO) is an example of a variant based on pheromone weighting.

In ACO, the trail with the highest pheromone level has a large weighting and is highly

likely to be picked.

A.9 Inver-Over Genetic Algorithm [Tao]

Inver-Over [Tao] is a genetic operator inspired by the Lin-Kernighan heuristic

algorithm. Like Lin-Kernighan, it performs a series of inversions. Unlike Lin-

Kernighan, the "second" cut is chosen based on what city follows the current city in the

mating parent. Thus the child inherits from the parent this single link. It's outline is:

Random initialization of the population P
while (not satisfied termination-condition) do
{

for each individual Si E P do
{

S' = Si
select (randomly) a city c from S'
repeat
{

if (rando < p)
select the city c' from the remaining cities in S'

else
{

select (randomly an individual from P
assign to c' the 'next' city to the city c in the selected individual

}
if (the next city or the previous city of city c in S' is c')

exit from the repeat loop
inverse the section from the next city of city c to the city c' in S'
c=c'

}
if (eval(S') < eval(Si)
Si = S'
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}

}

A. 10 Particle Swarm Optimization and PSOTSP

A Swarm is a collection of particles. A particle has both a position and a velocity

vector. [Kennedy95] gives the "classical" PSO equations where the position and velocity

vectors represent physical attributes of the particles. Equation 2 adjusts the particle's

velocity so that the particle moves toward the position of the neighborhood and global

best. Equation 3 applies the new velocity to the current position for a single "time

period" or generation. Together these equations form simple vector addition.

Vt

C u(P rg,t-t2(P ig,t-X t)

New Position

Global Best
C u r r e n tsi o n P g t - t P o s it i o n

p~~ ~ g- .g~-'tt x LoatBs

S s nosition

Figure 1 - Illustration of "Classical" PSO

Equation 2 - Calculating a Single Particle's New Velocity

Vt+1 = C 1V t G C 2(Pig,t-Xt) '@ C3(Pvg,-Xt)

Equation 3 - "Moving" a Single Particle in a Swarm

Xt+1 = X t + Vt+l
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The nature of these equations is analogous to planetary bodies orbiting a sun, but is

inherently stable. Under these equations (and given appropriate coefficients), all of the

particles in the swarm "gravitate" toward the best solution found so far. This produces a

local search. It is inherently stable because as the particles get closer to the best solution,

there is a weaker pull toward it, thus guaranteeing each particle converges (or orbits) near

the best solution. This differs from the orbiting analogy since planetary bodies have a

stronger pull toward the sun as they get nearer to it, thus are likely to be "flung" away

from the sun in a slingshot orbit.

Recent work involves parameter tuning [KennedyO0, Kennedy99], creation of

variants [Clerc99], and applying to specific problems [White, Carlisle, Chapman].

A. 10.1 PSO Applied to TSP - the PSOTSP Algorithm

[Clerc] uses the PSO equations, but redefines the meaning of position and velocity to

produce good solutions to TSP in the PSOTSP algorithm. In PSOTSP, positions

represent potential solutions (a list of cities). A Velocity (V) is a list of permutations

applied to a particle. Each particle has both a position and an associated velocity. The

Velocity Best (VB) is a velocity that maps a particle to the best particle in the swarm

found so far. In each generation, each particle is transformed to another particle using a

combination of its V and VB. A "No-hope" condition is meant to detect early

convergence to a local optimal solution. Possible "No-hope" conditions include 1) all

particles in the swarm within a given distance of the best solution, 2) a certain number of

generations without discovering a new best solution. When a "No-hope" condition is

met, the swarm is re-initialized to random positions to force more exploration. Thus, the

Swarm moves and explores the search space according to Equation 2 and 3.

Where:
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1) V,,, - The particle's new velocity for the next generation
2) C, - A percentage of the number of "steps" in a velocity to be used. A measure of how much the

particle "trusts" its own exploration.
3) Vt - The particle's current velocity. A list of permutation steps.
4) @ - The concatenation of velocity steps.
5) C2 - A percentage of the number of "steps" in a velocity to be used. A measure of how much a particle

"trusts" its neighborhood best velocity.
6) Pig,t - The neighborhood (from i to g) best position
7) "-" - The difference of two positions is the velocity that will transform the second position into the

first position
8) X, - The current position
9) C3 - A percentage of the number of "steps" in a velocity to be used. A measure of how much a particle

"trusts" the global velocity.
10) Pvg,t- The global best position
11) "+" - The transformation of a position using the velocity (yields a position)
12) X,,, - The particle's new "moved" position. The position of the next generation.

A. 10.2 PSOTSP Algorithm

Following is an outline of the PS0_TSP algorithm:

1. Initialize the positions and velocities.
2. Determine new particles by applying V,+, to each position (Equation 2,3).
3. Determine the best particle as the one with the shortest tour.
4. If the best solution in a neighborhood is a better solution than VB, save this solution as the new

VB.
5. Perform steps 2-4 as above until there is no improvement in the global VB for a set number of

iterations (other ending criterion may apply). At this point, we have converged to a local optima
and have "No-hope" of finding better solutions. Several methods may be used to find better
solutions such as simply starting again from step one without initializing the global best, or using a
local search heuristic on the particles and performing steps 2-4.

6. Once all "No-hope" / "Re-hope" methods are exhausted, return the best solution found.

A.10.3 PSO_TSP Example Moving a Particle

Let's look at an example of the way that PS0_TSP moves a single particle:

Let:
X1 =1{,3,5,4,2,1}
V,= {(3,5),(2,4)}
Cl= C 2 = C3 = 0.5
Pi,t= {1,3,4,5,2,1}
Pgt = {3,4,2,1,5,3}

From Equation 2:
Vt+= C1 Vt + C2(Pit - XI) + C3(Pg5 t- Xt) = 0.5{(3,5),(2,4)) + 0.5{(4,5)} + 0.5{(3,1),(4,1),(2,5)} = {(3,5)} +
{(4,5)} + {(3,1),(4,1)} = {(3,5),(4,5),(3,1),(4,1)}

Note that the list of permutations swaps cities, thus (3,5) means that city 3 is swapped with city 5.

From Equation 3:
X t+ = X t+ V i+ = {3,1,4,5,2,3}
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B Evolutionary Computation

This section is a comparison of known evolutionary algorithm (EA) operators with

their analogs in the molecular biology realm. See [Back96, BickBAOOO, BdckAAOOO].

B. ] Comparison of Basic Biological/EA Terminology

Table 5 - Biological and Evolutionary Algorithm Terminology

Biological Terminology Evolutionary Algorithm Terminology
Nucleotide base Binary digit, real, integer, programming language element,

state machine state...
Codon Not typically modeled
Gene Bit string segment, real value vector,
Protein-the basic product of DNA decoding, It might be useful to think of this in terms of Evolutionary
and the tools that perform the decoding as well Programming (EP). In EP, the basic units that are
as the building blocks that are used in the manipulated by the algorithm are programming language
construction process. and data elements. These elements fit into the process in a

manner analogous to how the various bits of protein floating
around a cell fit into DNA decoding. The tools used in the
construction process are nothing more than functions
written in a programming language-perhaps the same
language that the EP engine is working on, and finally, the
final product of the EP engine is a program made up of the
various building blocks. This analogy is rather loose-no
EAs that we are aware of actually model the ubiquitous
presence and widely varied roles played by proteins in the
biological realm.

Allele Feature value
Locus String position
Chromosome Complete bit string
Genotype Individuals exist at two levels: genotype and phenotype.

The genotypic representation of an individual is its genetic
material or blueprint for construction. Typically, the

Phenotype various evolutionary operators manipulate individuals at
this level. After manipulation this blueprint is used to
"decode" an individual into a phenotypic form that is then
evaluated for fitness.

Epistasis Non-linearity-interactive relationships between genes
Diploid organism-an organism with a set of It is possible to imagine an EA in which the genetic material
two chromosomes is carried in two or more sets of (probably) overlapping

chromosomes. It is fairly easy to see how a meiosis
operator might then reduce these sets of chromosomes to a
single set before individuals are mated.

Haploid organism-an organism with only one Most of the EAs in the class references model haploid
chromosome organisms in that an individual in a population typically has

only one chromosome.
Meiosis-the process in which the chromosomes In a loose sense, EAs that use sexual operators model
in a haploid organism are reduced into a meiosis. It is possible to imagine a diploid EA in which the
gamete, which is suitable for recombination multiple chromosomes are reduced before using a multiple
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with another gamete. parent operator.
Mitosis-the process by which a cell splits into Describing an active EA operator analog for mitosis is
two cells. There is no sense of a sexual difficult. There are few compelling reasons to make
operator in this process--the chromosomes are duplicate copies of an entire EA population element. It is
copied intact and are identical (or nearly so) in interesting to note that the process of convergence often
both of the new cells, leads to something like mitosis, in that many members of

the population end up as copies of the best population
element.

Population of individuals (tribes, herds, flocks, Population of elements or individuals in some computer
gaggles, giggles (a group of young girls), etc workable form. Unlike their biological counterparts, most

EA population elements spend most of their existence being
examined and worked on at the genotype level with only a
brief existence at the phenotype level for fitness evaluation.

Mating Crossover Operators
Mutation Mutation Operators
Survival Fitness/Selection Operators See discussion below for
Evolution The application of various details

evolutionary operators
through a search process.

Overall goal: Who knows the meaning or Goals, typically some sort of hard optimization problem
purpose of life? One thing is clear, it once solution, or search through an enormous solution space.
involved the number 42, but not much else is
known for certain. There are lots of sub
algorithms running all over the place, some of
which have readily discernable goals, and these
we are trying to understand and model.

B.2 Description of Operators

As alluded to in Table 5 there are four basic elements in every EA: An Algorithm or

Strategy in which some Population Elements are manipulated using the various

Evolutionary Operators towards satisfying some Overall Goal. This assignment

addresses primarily the third element, and the second only in that the representation of

the population elements affects which operators are used, and how.

The four main evolutionary operators are fitness, selection, mutation, and

recombination (a.k.a. crossover). The development of these operators stemmed from the

study of the biological processes involved with evolution. In this section we attempt to

play "connect-the-dots" between the EA operators and their biological ancestral concepts.

Table 6 shows the relationship between the operators described below, and some

instantiations of EAs. Algorithm 1, in Back's unified notation [Bdck96, 63-66], shows

how the various components of an EA fit together.
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One further thought before we jump into the operators is that they can be divided into

classes based upon the number of individuals operated on. The three possibilities are:

Asexual, where only one individual is used by the operator, sexual, in which two

individuals are worked with, and panmictic, in which more than two individuals are used

[Bdck96, 65]. It is interesting to note that asexual and sexual reproduction model popular

strategies in the biological world, and are commonly used in EAs, whereas panmictic has

no biological foundation, and is rarely used in EAs.

t:= 0;

initialize P(0) := l(0),..., aI(0)}

evaluate P(0): {(a,1(0)),K ,cF(D ,(0))}

where ( 9 k (0)) = 6 (f(F(9, (0))), P(0));

while (t(P(t)) # true) do

recombine : P'(t) := rer (P(t));

mutate : P"(t) := m. (P'(t));

evaluate : P"(t) := {'(t),K ,ff(t)}

c~ (t)),K , '(f(t))} where

b(Dkt) := (f (F (R(t))), P(t - co));

select P(t + 1) := s(P"(t) u Q);

t:=t+l;

od
Figure 33 - Pseudocode for Evolutionary Algorithm

64



Equation 4 - Evolutionary Algorithm

EA = (I,DQ,T,s,lpA)

is called Evolutionary Algorithm : '

(1) I = Representational Alphabet' (Section 3.1)

(2)V9,z I: ( 9 ) = 8(f(F(9 )), E),,), where S" 9 x E), -> 93'denotes a

scaling function and F is a decoding function (Section 3.2),
(3) Q = {mlp,, , :I P--> P, rp, ,, :' P--> P, rlpc :IP -+>V..

where the genetic operators are defined as appropriate for the family

of EA (Sections 3.2,3.3),

(4) T (P) s(mp ,(r, P))),

(5) s I' - I, the selection operator, samples individuals according to

some sampling strategy (Section 3.2),

(6) the termination criterion, and

(7)A = p

B. 3 Representation

Since computers are binary, the logical choice for representation is a binary string.

Pioneers in the field reasoned that representation didn't matter, since regardless of what

the representation is its still a binary string in the computer, so why not just keep it a

binary string so the computer has an easy time? Yet others showed that representation

can make a significant difference in efficiency and effectiveness.

Since it is true that the underlying representation to the computer is a binary string,

we must ask why representation makes a difference? To answer this, we must look at

how evolutionary computation works, then see the role that representation plays.

Evolutionary Computation is a feedback-driven control system. We start with a method

of "generating individuals". Once we have the genotypic information of a population, we

then look at the phenotypic information. The purpose of the recombination, mutation,

and selection operations is to use the information gained from the phenotypic information

(i.e., the fitness) to produce "offspring" with even better fitness. An ideal operator would

always produce offspring with better fitness values than their parents (given one exists).

In such a case, the feedback of the phenotypic information into the genotypic realm

always results in the global optimal solution (given enough time). Of course, ideal

operators have not been found for most complex problems. In such cases, a good
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operator that occasionally (the frequency of which determines the effectiveness of the

operator) produces offspring with better fitness values than their parents is used. A good

operator is guaranteed to find a "good" solution (usually a local optima), but not to find

the global optima (although sometimes it does).

This search for good and ideal operators has lead to the need for various

representations. The designer of such an operator must ask why a particular individual

received its fitness evaluation? What makes a good individual good, and what makes a

bad individual bad? The operator must then use this information to produce offspring.

The operator inherently uses domain information. To aid in the performance of the

operator, a representation other than binary is often helpful.

An example uses a binary string of 40 bits. The fitness function looks at four bits at a

time and adds one to the fitness value only if one of the four bits is a one. Thus, an

optimal solution has ten ones and a value of ten. A good operator somehow incorporates

"four bits at a time". For example, it could be crossover that only occurs on the four bit

boundaries. While this does give us a good operator and allow us to preserve the binary

representation, it is usually better to use a different representation. In this case using an

array of 10 integers where each integer may have a value from 0 to 15 would work. In

this way, incorporation of the four-bit boundary is inherent in the representation.

Choosing an appropriate representation often produces more easily understood, and more

efficient code because extra work doesn't need to be done in code that can be inherent in

the representation.

Common representations used are a binary string of ones and zeros (132-5) as

discussed previously, a real-valued vector (136-8), an integer string, a permutation (13 9-

49), a finite-state machine (151-4), and a parse tree. Real-valued vectors are used when

the problem domain includes real values. For example: find the first 10 real-value

constants of the Taylor expansion of Sin (X) * Exp(X). Integer strings are likewise used

when they appear in the problem domain (see example above). Permutations are used

when a permutation of the optimal solution results in an equivalent solution. Finite-state

representations are convenient when the required solutions to a particular problem of

interest require the generation of a sequence of symbols having specific meaning.
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Another possible representation in these cases is a parse tree, which works well for

mathematical (formula) problems and computer programming problems.

B. 4 Selection Mechanism: Fitness and Selection

Selection's primary objective is to emphasize better solutions in the search

population. This greater emphasis leads to a higher likelihood that the genetic material in

a solution is carried into future generations [BackBAOOO, 166]. This is directly

analogous to the natural process Darwin called Survival of the Fittest. The question of

how to rank-order the population arises. In the natural world, this is often the task of

predators (or in the case of top predators, lots of very fast and agile prey), but also may

fall to great migratory distances, or other difficult to overcome obstacles. In the EA

world, this ordering is the responsibility of the fitness function [BackBAOOO, 166].

When a solution is decoded, the EAs fitness function examines and records its phenotypic

location, and based on that recorded value, ranks the solution.

The three most commonly seen selection operators are: Proportional, Tournament,

and Rank-based. All three of these are modeled after the selection operators seen in

nature. In proportional selection, as the name implies, population elements are given

probabilities for selection directly proportional to their fitness evaluation [BackBAOOO,

172, Goldberg89]. According to Grefenstette the process is as follows

[BackBAO00173]:

1. Each population elements i is first evaluated to determine its fitness via some fitness function
0(i) . This may involve a scaling to keep the fitness values inside some defined area., and

may also involve some sort of penalty weighting which allows infeasible solutions to compete
alongside feasible ones.

2. Once each elements fitness has been determined, a probability distribution,

p . ,l e c t i o n ( i ) _ 0( )

is created such that the probability of selecting a given population element is proportional to its
fitness.

3. The probability distribution is used to select population elements for further evolutionary
operators in a number of different ways:

a. In steady-state algorithms, one parent at a time is drawn from the distribution

b. In generational algorithms, where the entire population is replaced at selection time,
the distribution is sampled t times, in a manner analogous to a roulette wheel.
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c. Since the roulette wheel exhibits bias due to the small number of samples, a technique
known as Stochastic Universal Sampling was developed that reduces this bias. [Baker87]

3. Depending on the algorithm, other evolutionary operators may now be applied to the selected
population members.

This selection operator has received a great deal of attention over the years, indeed

the mathematics behind it are very closely linked to the Schema Theorem [Holland]. In

the Schema theorem, it is postulated that sub-sequences of genes, known as building

blocks, representing hyperplanes in the search space are implicitly manipulated by

proportional selection operators. In particular, it is thought that the numbers of those

building blocks that contribute to better fitness scores increases exponentially as the

search progresses. This selection technique models nature in that certain genes which

contribute significantly to survival, such as immunity to a certain disease or an adaptation

to specific environmental niche, increases exponentially in future populations.

The next selection operator, Tournament selection, is described by Blickle, as the

process of randomly drawing a set of solutions from the population, with or without

replacement, and then choosing the element with the highest fitness value as a parent of

the next generation. This process is repeated until the proper numbers of parents have

been chosen for the next phase of the EA. The primary lure of this technique is its

computation cheapness, which derives from the lack of a sorting phase. One

disadvantage to this technique is that the mathematics behind the schema theorem don't

fit very well into its structure, thus there is often a very high variance in the expected

number of offspring that contain certain good building blocks. Fogel discusses several

versions of tournament based selection operators: Boltzmann, Soft-Brood, Disruptive,

Non-Linear ranking, Competitive Selection, and Variable Lifespan [BackBAOOO, 202].

The best natural analog to this EA operator is the tournament based football playoff

season. The best team wins each match and is promoted to the next tournament level.

This is one of the few cases in which the overall goal of the entire search process is

known: It is to determine which team gets to play (and probably beat) the Denver

Broncos in the Super Bowl.

Rank-based selection chooses elements from a probability distribution based only on

the elements rank-ordering [BackBAOOO, 187]. The main difference between

proportional selection and rank-based selection is that the fitness of the individual isn't

68



considered, only its ranking relative to the rest of the population. This helps eliminate

problems such as having a single enormously fit individual lead the entire population to

premature convergence. In term of natural selection operators, this one closely matches

the human habit of (semi)monogamous relationships. In the courting process, a courted

individual chooses a mate based largely on the ranking of the chosen individual

compared to the other suitors. Since highly attractive individuals (by whatever

attractiveness standard is being applied) are ranked highly, they are more likely to be

chosen, and may indeed be chosen more than once, but it is pretty rare indeed for a single

human to be chosen to mate with basically the entire population of choosers.

When talking about selection operators it is usual to see discussion about the so-

called generation gap methods. Sarma and De Jong [Back96, BackBAOOO-205] offer up

the idea of non-overlapping and overlapping populations. In the non-overlapping

population model, the entire parent population is replaced by children (i.e, the parents and

their children never compete with each other.) In the overlapping model, parents and

children do compete for survival (for some reason this brings to mind the whole Oedipus

complex, which is, of course, an entirely different matter.) Traditional notation represents

the number of elements in the parent population as a and the number of children as 2. It

is also traditional to denote overlapping populations with (Pu + 2) and non-overlapping

populations with (pu, 2). In (pi + 2) system the parents and children compete, and U

members are chosen to continue. In (Ai, 2) systems 2 is usually >>,u and some selection

technique is used to pick / children which then make up the next population. It seems

like in the animal (but not always the insect) kingdom, natural selection based on

"normal" survival of the fittest is (du + A ) where both extremes in age decrease the fitness

of an individual.

As stated above, the primary objective of the selection operator is to emphasize better

solutions. The tool used to distinguish between the solutions, i.e. to determine the value

of a particular solution, is the fitness operator. The task of the fitness operator is

straightforward-to take the genotype representation of a solution, decode it, evaluate

where it is located in the phenotype space with regards to the overall EA goal, and return

that evaluation to the selection operator. In practice, however, the problem is anything

but simple. In part this complexity stems from the fact that the fitness operator is
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typically very problem dependant, it is where the fairly general model of the EA is

matched up to the particular problem domain. Very often, determining fitness may

involve three operations: decoding, scaling, and evaluation.

In those EAs in which individuals are encoded, i.e. not problem domain object

variables, the fitness function must decode them before evaluation [Back96,

BackAAOOO-4]. Decoding a solution is representation dependent, and the ease with

which it can be accomplished plays a large part in the decision as to which representation

an EA should use. Scaling is used, among other reasons, to help keep bias in the

population down, and to restrict the output from the fitness function to regions which are

legal for the selection mechanism [Back96, 111 ]. The term scaling also seems to crop up

in the context of shaping, in which it is used to smooth jagged phenotypic landscapes, or

steepen flatter ones. Evaluation is the process of plugging the decoded (if necessary)

individual into a function that is expressed in terms of the phenotype space and the

optimization goal.

Fitness functions may be single objective, or multiple-objective [BackBAOOO, 25].

While single objective functions are more commonly seen in the EA literature, they are

actually further from the biological model than their multi-objective functions. One

principal that seems to stand out in the molecular biology literature is that most

components in natural systems play more than one role, and that the natural fitness

function is most definitely multi-objective. In most multi-objective systems, the various

factors must be weighted, and the searcher typically returns a set of solution along what is

known as a Pareto Front. Finally, fitness functions can be categorized based on what the

value that they return is relative to. In fitness functions based on Objective standards, the

evaluation of an individual is an objective measure of where the individual falls in the

fitness landscape. This is in contrast to Relative and Competitive fitness functions. In the

former, a solution's fitness value is relative to some unique solution, or other standard,

and in the latter, the individual is rated based somehow on the fitness of the rest of the

population [BackBAOOO, 12].

B. 5 Search Operator.- Mutation
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In nature, mutation is a change in the genetic material. In this way, new genetic

material can be formed. In evolutionary computation its role is either hill climbing or

exploration. There are three basic types of mutation [BackBAOOO, 237] :

1. Gene mutation: a single gene is affected. This is arguably the most common mutation modeled in
GAs. GA mutation is often simply bit-inversion. The probability of mutation is typically low
(ranging from. 1% to 2%). For each allele, if the probability of mutation is met, then the allele is
"flipped".

2. Chromosome mutation: The gene ordering within the chromosome is changed. Chromosome
mutations may often include changes in the number of genes.

3. Genome mutations: Either the number of genomes or the number of chromosomes is changed.
Since GAs rarely include multiple chromosomes, this type of mutation is probably rarely modeled.

Since mutation relies on randomness (a very inefficient computational process), it is

important to be efficient. A very inefficient method would be to "roll the dice" for every

allele. It is far more efficient to "roll the dice" to determine the next allele to be mutated.

This applies not only to binary strings, but to all representations.

There are differing mutation operators for various representations. Binary String

mutation is discussed above. For real-valued mutation, an allele in the vector of real

values is selected for mutation and a random value (usually with mean zero) is added to

it. With this type of mutation, the random distribution is significant. A uniform

distribution gives tremendous exploration. A Gaussian distribution will not explore

nearly as much, and mutated values will be very near the original. A Cauchy distribution

is similar to a Gaussian, but has a "fatter tail" so provides for a greater degree of

exploration. With permutations, examples of mutations include inverting, swapping, and

removing and re-inserting elements. For finite-state machines, there are five mutation

modes: 1) change an output symbol, 2) change a state transition, 3) add a new state, 4)

delete a state, and 5) change the start state. For parse trees, mutation includes growing

the tree by splicing in a randomly generated segment, shrinking the tree by cutting a

segment, and Switching the tree by switching two randomly selected nodes in the tree.

B. 6 Search Operator. Recombination / Crossover

Recombination in an EA is an analog of the process of information exchange of

genetic material that occurs between adjacent chromatids during meiosis. It is through

this process that a mixture of genetic information from two parents is combined in a

child. This combining of factors from the parent organisms results in exploration of the
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fitness landscape by creating novel (from the perspective of the parents) new patterns

based on the (presumably) good genes from the parents. This model maps very nicely

onto the Schema Theorem [Goldberg89], which attempts to explain how combinations

of genes in a chromosome move into future populations. When first exposed to this

concept, it seemed to offer a great deal of insight into how EAs work (at least those that

resemble genetic algorithms (GA) in the sense that individuals are represented by strings

of genes, whether the representation is binary or something more complex.) It is

unfortunate that the applicability of the schema theorem has narrowed down to analyzing

a single generation, and that is doesn't apply to situations in which the fitness function

exhibits a lot of "noise" [BackBAOOO, xxxiv]. While crossover is most easily

understood in the context of binary strings, it is possible to perform crossover in most EA

representations. [BackBAOOO, 256-289] provides an excellent discussion of exactly how

recombination is performed in various non-binary representations; however, we limit our

example discussions to those operations as performed on binary strings. One primary

difference between string based and non-string based representations is the care which

much be taken to perform crossover in such a way as to produce semantically valid

results.

The recombination process usually takes place in three stages: selection of two or

more individuals from the population, the determination of one or more crossover

locations, and the actual creation of new population members by swapping the material

between the selected crossover points [BackBAOOO, 257]. The various parameters

involved in crossover can be fixed, modified according to a determinist schedule, or

dynamically by encoding them into the EA chromosomal structure.
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B. 7 Selected EC Structure

While there are a great many possibilities for approaching and solving the TSP, the

approach selected is the Swarm. The work of [Dorigo] with AS has shown this approach

to be effective. It is logical that since a "socio-evolutionary" method exists in nature that

solves the TSP for small dimension problems, the same approach may work

computationally for large dimension problems. Unfortunately, there is no guarantee that

this approach is any better than any other evolutionary computational method.

Specifically, Particle Swarm Optimization was selected. PSO was selected because it is a

relatively new approach, thus we are exploring it to see if it offers advantages over other

approaches.

B.7.1 Alternatives and Specific EC Representations, Operators
Let's look at the specific choices made, as well as the alternatives for Representation,

Recombination, Mutation, and Selection.

B.7.2 Representation
Because of the problem domain (see B.3), the selected representation is a

permutation. While the problem domain compels us to use this representation (other

alternatives are inferior per the discussion of B.3), there is still an implementation issue.

Is it better to use a linked list or an array of integers? Both will be implemented in order

to determine (empirically) the answer.

B.7.3 Recombination
Generically, the recombination method is also a permutation as dictated by the

problem domain. Specifically, PSO requires the parents of recombination to be the

global best position, the local best position, and the current position. The approach that

Inver-Over takes is random selection of parents. The PSO approach should converge

faster (and explore less) than more traditional methods.

B.7.4 Mutation
What is the role of mutation? Why do we do it? The standard method of

implementing mutation is simply "flipping a bit" (see B.5). As such, it is mostly a hill-

climbing technique. Let's change a bit and see if we improve. A broad view is that it

enables more exploration.

The mutation operators available for permutations include inverting, swapping, and

removing and re-inserting elements. These operators are all hill-climbing in nature. All
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of them are subsets of the Lin-Kernighan (see Lawler) algorithm, which is definitely a

hill-climber. In other words, if a position has been Lin-Kernighan optimized, no

improvement can be realized by inverting, swapping, or removing and re-inserting

elements. Because of this and the fact that the Lin-Kernighan algorithm is incredibly

efficient and effective, no explicit mutation operation is used. Instead, the Lin-Kernighan

algorithm is used for hill-climbing.

B.7.5 Selection
Selection has two applications. In one sense, we select who is to mate. This is

addressed in section B.7.3. When we talk about the neighborhood best or the global best

solution, we then have an elitist rank-based selection method.

In the more applicable sense, selection determines which individuals survive to the

next generation in the population. In PSO, there is a hybrid method. As far as the

personal best solution is concerned, the method is always (t + 2). The new position

competes with the personal best solution. The winner is the personal best solution. As

far as the position is concerned, the method is (,u, 2). The new position always replaces

the old position.

B.8 Theory of Execution

With the goal of finding the global optima, we perform a combination of hill-

climbing and hill-jumping. The Lin-Kenrnighan is a most effective hill-climber. We can

easily generate many local optima. We then use hill-jumping to combine the local

optima and hopefully find a global optima. Often, hill-climbing is needed at this point to

ensure the local optimal is truly found.

The Swarm uses this combination of hill-jumping (Recombination) and hill-climbing

(Mutation or Lin-Kernighan) followed by fitness evaluation and selection. In so doing, it

may very well out-perform a standard Lin-Kernighan algorithm.
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C Testing Scripts

These are the "inputs.txt" files used to generate data. See [Design of Experiments].

Copies of these files may also be found on the CD of this thesis.

C. ] Experiment] - LK Baseline

Lktest.txt

C.2 Experiment 2 - PSOAS Baseline

swarmtest.txt

C.3 Experiment 3- AS Baseline

Antstest.txt Anttest.txt

C.4 Experiment 4 - Inver-Over Baseline

invertest.txt

C.5 Experiment 5 - Course Tuning PSOAS: 10% Default "Trust"

tunetestkappalO.txt

C. 6 Experiment 6- Course Tuning PSOAS: 10% Local "Trust"

tunetestgamnalO.txt

C. 7 Experiment 7- Greedy PSOAS: 10% Default "Trust"
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greedy 1Oka ppatest.txt

C8 Experiment 8 -Greedy PSO_AS.- 10% Local "Trust"

greedytestgammalO.txt

C9 Experiment 9 -Fine Tuning PSO AS.- 90% Global "Trust"

fine9Ophi.txt

C. 10 Experiment 10 -Fine Tuning PSO AS: 85,95% Global "Trust"

fine8595phi.txt

C.I]I Experiment 11I - Greedy PSOAS. 85,90,95 Global "Trust"

finetunetestgreedyphi859O95.t

C. 12 Experiment 12 - PSOAS Tuned for Quality of Solution

greedy289O.txt

C. 13 Experiment 1.3 --PSOAS Tuned for Speed

2890 .txt

C. 14 Experiment 17 -Tuned PSOAS vs Published Results of Inver-Over
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PKG39.txt
//f-string,kappa, gamma,phi,trace,queens,procs,vels,ins,nei,usevl,preinit,sizex,movetype,moveheu,rehope2,r
ehope3, runs;test-for-in-kernighan
eill~l.tsp 0 00 021 1 10 1 6100 55 7 710

linlO5.tsp 0 0 0 0 2 1 1 1 0 1 6 100 5 5 7 7 10

u159.tsp 0 00 0 211 10 1 6100 55 7 710

d198.tsp 0 0 0 0 2 1 1 1 0 1 6 100 5 5 7 7 10

tsp225.tsp 0 0 0 0 2 1 1 1 0 1 6 100 5 5 7 7 10

a280.tsp 00 0 02 1 110 1 6100 5 5 7 7 10

pr299.tsp 0 00 02 1 110 1 6100 55 7 710

linhp3l8.tsp 0 0 0 0 2 1 1 1 0 1 6 100 5 5 7 7 10

si535.tsp 0 0 0 0 2 1 1 1 0 1 6 100 5 5 7 7 10

pa561.tsp 0 000 2 11 10 1 6100 55 7 710

u724.tsp 0 00 02 11 10 1 6100 55 7 710

dsjlOOO.tsp 0 000 21 1 10 1 6100 55 7 710

d1291.tsp 0 00 02 11 10 1 6100 55 7 710

nrw1379.tsp 00 0 02 11 10 1 6100 5 57 710

f11577.tsp 0 0 0 0 2 1 1 1 0 1 6 100 5 5 7 7 10

pcb3038.tsp 0 0 0 0 2 1 1 1 0 1 6 100 5 5 7 7 10

Page 1



PKG3A.TXT
//f-string,kappa,gamma,phi ,trace,queens,procs,vels,ins,nei ,usevl ,preinit,sizex,movetype,moveheu, rehope2,r
ehope3, runs;testfor-swarM-Baseline
ei1101.tsp 80 10 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

linl05.tsp 80 10 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u159.tsp 80 10100 20 1 110 1 5100 65 7 710

d198.tsp 80 10 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

tsp225.tsp 80 10 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

a280.tsp 80 10 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

pr299.tsp 80 10100 20 1 110 1 5100 65 7 710

linhp3l8.tsp 80 10 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 80 10 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

pa561.tsp 80 10100 2 01 110 1 5100 65 7 710

u724.tsp 80 10 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

dsjlOOO.tsp 80 10100 20 1 110 1 5100 65 7 710

d1291.tsp 80 1010 02 0 1110 1 5100 65 7 710

nrw1379.tsp 80 10100 2 01 110 1 5100 65 7 710

f11577.tsp 80 10 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

pcb3038.tsp 80 10 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10
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PKG3B .txt
//f-string,kappa, gamma,phi,trace,queens,procs,vels,ins,nei,usevl,preinit,sizex,movetype,moveheu,rehope2,r
ehope3, runs;test-for-As-baseline
eill~l.tsp 100 0 0 0 2 1 1 1 0 0 7 100 4 7 7 7 10

linlO5.tsp 100 0 0 0 2 1 1 1 0 0 7 100 4 7 7 7 10

u159.tsp 100 000 2 11 10 0 7100 47 7 710

d198.tsp 100 00 0 211 10 0 7100 4 77 710

tsp22S.tsp 100 0 0 0 2 1 1 1 0 0 7 100 4 7 7 7 10

a280.tsp 100 00 02 11 10 0 7100 47 7 710

pr299.tsp 100 00 0 211 10 0 7100 47 7 710

linhp3l8.tsp 100 0 0 0 2 1 1 1 0 0 7 100 4 7 7 7 10

si535.tsp 100 0 0 0 2 1 1 1 0 0 7 100 4 7 7 7 10

pa561.tsp 100 00 02 11 10 0 7100 47 7 710

u724.tsp 100 0 0 0 2 1 1 1 0 0 7 100 4 7 7 7 10

dsjlOOO.tsp 100 00 02 11 10 0 7100 47 7 710

d1291.tsp 100 00 02 11 10 0 7100 47 7 710

nrw1379.tsp 100 0 0 0 2 1 1 1 0 0 7 100 4 7 7 7 10

f11577.tsp 100 0 0 0 2 1 1 1 0 0 7 100 4 7 7 7 10

pcb3038.tsp 100 00 02 11 10 0 7100 47 7 710
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PKG3c.txt
//fLstring,kappa, gamma,phi ,trace,queens,procs,vels,ins,nei,usevl,preinit,sizex,movetype,moveheu,rehope2,r
ehope3, runs;testfor-As-with-in-kernighan
eill~l.tsp 100 0 0 0 2 1 1 1 0 0 5 100 4 5 7 7 10

linlO5.tsp 100 0 0 0 2 1 1 1 0 0 5 100 4 5 7 7 10

u159.tsp 100 00 02 1 11 00 5100 45 7 710

d198.tsp 100 0 0 0 2 1 1 1 0 0 5 100 4 5 7 7 10

tsp225.tsp 100 0 0 0 2 1 1 1 0 0 5 100 4 5 7 7 10

a280.tsp 100 00 02 11 10 0 5100 4 57 710

pr299.tsp 100 00 0 211 10 0 5100 45 7 710

linhp3l8.tsp 100 0 0 0 2 1 1 1 0 0 5 100 4 5 7 7 10

si535.tsp 100 0 0 0 2 1 1 1 0 0 5 100 4 5 7 7 10

pa561.tsp 1000 00 21 11 0 05 100 45 7 710

u724.tsp 1000 0 02 1 11 0 05100 45 7 710

dsjlOOO.tsp 100 0 00 21 11 0 05100 45 7 710

d1291.tsp 1000 0 02 11 1 00 5 100 4 5 7 7 10

nrw1379.tsp 100 00 02 11 10 0 5100 45 7 710

f11577.tsp 100 0 0 0 2 1 1 1 0 0 5 100 4 5 7 7 10

pcb3038.tsp 100 000 21 1 10 0 5100 45 7 710
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PKG3D .TXT
//f-string,kappa, gamma,phi ,trace,queens,procs,vels,ins,nei ,usevl ,preinit,sizex,movetype,moveheu,rehope2,r
ehope3, runs;test-?or..inver-over
eill~l.tsp 2 0 0 0 2 1 0 1 0 1 6 100 60 7 7 7 10

11n105.tsp 2 0 0 0 2 1 0 1 0 1 6 100 60 7 7 7 10

u159.tsp 2 00 02 10 10 1 6100 607 7 710

d198.tsp 2 0 0 0 2 1 0 1 0 1 6 100 60 7 7 7 10

tsp225.tsp 2 0 0 0 2 1 0 1 0 1 6 100 60 7 7 7 10

a280.tsp 2 00 02 1 010 1 6100 607 7 710

pr299.tsp 2 00 02 10 10 1 6100 607 7 710

linhp3l8.tsp 2 0 0 0 2 1 0 1 0 1 6 100 60 7 7 7 10

si53S.tsp 2 0 0 0 2 1 0 1 0 1 6 100 60 7 7 7 10

pa561.tsp 2 00 02 10 10 1 6100 607 7 710

u724.tsp 2 00 02 10 10 1 6100 607 7 710

dsjlOOO.tsp 20 0 02 10 10 1 6100 607 7 710

d1291.tsp 2 00 02 10 10 1 6100 607 7 710

nrw1379.tsp 2 0 0 0 2 1 0 1 0 1 6 100 60 7 7 7 10

f11577.tsp 2 0 0 0 2 1 0 1 0 1 6 100 60 7 7 7 10

pcb3038.tsp 2 0 0 0 2 1 0 1 0 1 6 100 60 7 7 7 10
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PKG3E.TXT
//f.string,kappa, gamma,phi ,trace,queens,procs,vels,ins,nei,usevl ,preinit,sizex,movetype,moveheu,rehope2,r
ehope3, runs;test-forli n-kernighan
dZ98.tsp 10 0 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 10 0 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 0 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 10 80 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 10 10 80 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 10 80 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 20 70 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 10 20 70 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 20 70 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 30 60 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 10 30 60 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 30 60 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 40 50 0 2 0 1 1 10 1 5 100 6 5 7 7 10

s1535.tsp 10 40 50 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 40 50 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 50 40 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 10 50 40 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 50 40 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 60 30 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 10 60 30 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 60 30 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 70 20 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 10 70 20 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 70 20 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 80 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

s1535.tsp 10 80 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 80 10 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 90 0 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 10 90 0 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 90 0 0 2 0 1 1 10 1 5 100 6 5 7 7 10
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PKG3F.TXT
//f-string,kappa, gamma,phi ,trace,queens,procs,vels,ins,nei,usevl ,preinit,sizex,movetype,moveheu,rehope2,r
ehope3, runs;test-forlin-kernighan
d198.tsp 0 10 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 0 10 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 0 10 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 10 80 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 10 10 80 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 10 80 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 20 10 70 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 20 10 70 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 20 10 70 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 30 10 60 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 30 10 60 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 30 10 60 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 40 10 50 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 40 10 50 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 40 10 50 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 50 10 40 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 50 10 40 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 50 10 40 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 60 10 30 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 60 10 30 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 60 10 30 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 70 10 20 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 70 10 20 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 70 10 20 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 90 10 0 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 90 10 0 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 90 10 0 0 2 0 1 1 10 1 5 100 6 5 7 7 10
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PKG40 .TXT
//f-string,kappa, gamma,phi,trace,queens,procs,vels,ins,nei,usevl,preinit,sizex,movetype,moveheu,rehope2,r
ehope3, runs;test-forlin-kernighan
d198.tsp 10 0 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 0 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 0 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 10 10 80 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 10 80 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 10 80 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 10 20 70 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 20 70 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 20 70 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 10 30 60 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 30 60 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 30 60 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 10 40 50 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 40 50 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 40 50 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 10 50 40 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 50 40 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 50 40 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 10 60 30 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 60 30 0 2 0 1 1.10 1 5 100 2 5 7 7 10

u724.tsp 10 60 30 0 2 0 1 1 0 1 5 100 2 5 7 7 10

d198.tsp 10 70 20 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 70 20 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 70 20 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 10 80 10 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 80 10 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 80 10 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 10 90 0 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 90 0 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 90 0 0 2 0 1 1 10 1 5 100 2 5 7 7 10
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PKG41.TXT
//fistring,kappa, gamma,phi,trace,queens,procs,vels,ins,nei,usevl,preinit,sizex,movetype,moveheu,rehope2,r
ehope3, runs;test-for-lin-kernighan
d198.tsp 0 10 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 0 10 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 0 10 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 10 10 80 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 10 80 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 10 80 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 20 10 70 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 20 10 70 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 20 10 70 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 30 10 60 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 30 10 60 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 30 10 60 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 40 10 50 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 40 10 50 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 40 10 50 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 50 10 40 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 50 10 40 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 50 10 40 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 60 10 30 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 60 10 30 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 60 10 30 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 70 10 20 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 70 10 20 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 70 10 20 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 90 10 0 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 90 10 0 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 90 10 0 0 2 0 1 1 10 1 5 100 2 5 7 7 10
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PKG42.TXT
//f-string,kappa, gamma,phi,trace,queens,procs,vels,ins,nei,usevl,preinit,sizex,movetype,moveheu,rehope2,r
ehope3,runs;test-for-lin-kernighan
d198.tsp 1 9 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 1 9 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 1 9 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 3 7 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

sl535.tsp 3 7 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 3 7 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 4 6 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 4 6 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 4 6 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 5 5 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 5 5 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 5 5 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 6 4 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 6 4 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 6 4 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 7 3 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 7 3 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 7 3 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 8 2 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 8 2 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 8 2 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 9 1 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 9 1 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 9 1 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10
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PKG43.TXT
//f-string,kappa, gamma,phi,trace,queens,procs,vels,ins,nei,usevl,preinit,sizex,movetype,moveheu,rehope2,r
ehope3,runs;test-for-lin-kernighan
d198.tsp 0 5 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 0 5 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 0 5 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 1 4 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 1 4 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 1 4 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 2 3 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 2 3 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 2 3 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 3 2 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 3 2 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 3 2 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 4 1 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

s1535.tsp 4 1 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 4 1 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 5 0 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 5 0 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 5 0 95 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 0 15 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 0 15 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 0 15 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 1 14 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 1 14 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 1 14 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 2 13 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 2 13 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 2 13 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 3 12 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 3 12 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 3 12 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 4 11 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 4 11 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 4 11 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 5 10 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 5 10 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 5 10 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 6 9 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 6 9 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 6 9 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10
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PKG43.TXT

d198.tsp 7 8 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 7 8 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 7 8 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 8 7 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 8 7 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 8 7 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d!98.tsp 9 6 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

s1535.tsp 9 6 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 9 6 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 10 5 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

s1535.tsp 10 5 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 10 5 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 11 4 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

sl535.tsp 11 4 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 11 4 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 12 3 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 12 3 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 12 3 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 13 2 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 13 2 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 13 2 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 14 1 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 14 1 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 14 1 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 15 0 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 15 0 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 15 0 85 0 2 0 1 1 10 1 5 100 6 5 7 7 10
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PKG44.TXT
//f-string,kappa, gamma,phi,trace,queens,procs,vels,ins,nei,usevl,preinit,sizex,movetype,moveheu,rehope2,r
ehope3,runs; test-for-lin-kernighan
d198.tsp 1 9 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

s1535.tsp 1 9 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 1 9 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 3 7 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 3 7 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 3 7 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 4 6 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 4 6 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 4 6 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 5 5 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 5 5 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 5 5 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 6 4 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 6 4 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 6 4 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 7 3 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

s1535.tsp 7 3 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 7 3 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 8 2 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 8 2 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 8 2 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 9 1 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 9 1 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 9 1 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 0 5 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

sl535.tsp 0 5 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 0 5 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 1 4 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 1 4 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 1 4 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 2 3 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 2 3 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 2 3 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 3 2 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 3 2 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 3 2 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10
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PKG44.TXT

d198.tsp 4 1 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 4 1 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 4 1 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 5 0 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 5 0 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 5 0 95 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 0 15 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

s1535.tsp 0 15 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 0 15 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 1 14 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

s1535.tsp 1 14 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 1 14 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 2 13 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 2 13 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 2 13 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 3 12 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 3 12 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 3 12 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 4 11 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 4 11 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 4 11 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 5 10 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 5 10 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 5 10 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 6 9 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 6 9 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 6 9 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 7 8 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 7 8 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 7 8 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 8 7 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 8 7 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 8 7 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 9 6 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 9 6 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 9 6 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 10 5 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 10 5 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 10 5 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10
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PKG44.TXT

d198.tsp 11 4850 20 1 110 15 100 25 7 710

si535.tsp 11 4 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 11 4850 20 1 110 1 5100 25 7 710

dl98.tsp 12 3 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 12 3 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 12 3 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 13 2 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 13 2 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 13 2850 20 1 110 1 5100 25 7 710

d198.tsp 14 1 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 14 1 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 14 1 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

d198.tsp 15 0 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

siS35.tsp 15 0 85 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u724.tsp 15 0850 20 1 110 1 5100 25 7 710
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PKG4S .TXT
//f-string,kappa, gamma,phi,trace,queens,procs,vels,-ins,nei,usevl,preinit,sizex,movetype,moveheu,rehope2,r
ehope3, runs~test-for-lin-kernighan
eill~l.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

linlOS.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

u159.tsp 2 890 020 1 110 1 5100 25 7 710

d198.tsp 2 8900 20 1 110 1 5100 2 57 710

tsp22S.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

a280.tsp 2 8900 20 1 110 15 100 25 7 710

pr299.tsp 2 8900 20 1 110 15 100 25 7 710

linhp3l8.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

si535.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

pa561.tsp 2 8900 2 01 110 1 5100 25 7 710

u724.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

dsjlOOO.tsp 2 8900 20 1 110 1 5100 25S7 710

d1291.tsp 2 8900 2 01 110 1 5100 25 7 710

nrw1379.tsp 2 890 020 1 110 1 5100 25 7 710

f11577.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

pcb3038.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10
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PKG46.txt
//fistring,kappa, gamma,phi ,trace,queens,procs,vels,ins,nei,usevl,preinit,sizex,movetype,moveheu,rehope2,r
chope3,runs; test-forl i n-kerni ghan
eillOl.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

linlO5.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u159.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d198.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

tsp225.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

a280.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

pr299.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

linhp3l8.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

si535.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

pa561.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

u724.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

dsjlOOO.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

d1291.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

nrw1379.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

f11577.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10

pcb3038.tsp 2 8 90 0 2 0 1 1 10 1 5 100 6 5 7 7 10
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PKG47 .TXT
//fistring,kappa, gamma,phi ,trace,queens,procs,vels,ins,nei,usevl ,preinit,sizex,movetype,moveheu,rehope2,r
ehope3, runs;test-for-lin-kernighan
eill~l.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

lin105.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

pcb442.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

pr2392.tsp 2 8 90 0 2 0 1 1 10 1 5 100 2 5 7 7 10

Page 1



D Excel Spreadsheets of Raw Data and Charts

These are the Excel spreadsheets or raw data created from the experiments. The

associated files are also on the CD of the thesis. In the "one" row above the spreadsheet

data is the name of the "inputs.txt" file used to create the data.

D. ] Experiment] - LK Baseline, Experiment 2 - PSOAS Baseline, Experiment 12 -
PSOAS Tuned for Quality of Solution, Experiment 13 - PSOAS Tuned for Speed

swarmtestst801010
xs

D.2 Experiment 3 -AS Baseline

Antrst.txt

D. 3 Experiment 4 - Inver-Over Baseline

Inverrst.txt

D.4 Experiment 5 - Course Tuning PSOAS. 10% Default "Trust", Experiment 6-
Course Tuning PSOAS. 10% Local "Trust",

tunelOgamma.xls

D. 5 Experiment 7- Greedy PSO AS: 10% Default "Trust",
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GreedyGammalO.xls

D. 6 Experiment 8- Greedy PSOAS: 10% Local "Trust"

greedylOkapparst.txt

D. 7 Experiment 9 - Course Tuning PSOAS: 90% Global "Trust", Experiment 10 -
Fine Tuning PSO AS.- 85,95% Global "Trust"

finetune.xis

D.8 Experiment 11 - Greedy PSO AS. 85,90,95 Global "Trust"

Greedyfinetunexls 85Vs9OVs95.xls

D. 9 Experiment 18 -Tuned PSOAS vs AFIT Published Results
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E Heterogeneous Implementation of a Particle Swarm Optimization

The file "parallelPSOTSP.doc" is an unpublished paper included on the CD. The

following link should automatically open the paper:

paralleIPSOTSP.doc
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Heterogeneous Implementation of a

Parallel Particle Swarm Optimization

Using Windows 2000/Linux Redhat 6.2

On a Myrnet 100 MB Network

Barry R. Secrest and Steven Michaud Dr. Hartrum
Air Force Research Laboratory Air Force Research Laboratory

Wright-Patterson AFB OH Wright-Patterson AFB OH

{barry.secrest, steven.michaud a afit.af.rnil

Abstract: Particle Swarm Optimization how they might be used to help solve mission
(PSO) has been shown to provide good answers planning of a set of Blackhawks.
to the Traveling Salesman Problem. While not
as powerful as some specific algorithms, its 1.1 Air-Force Related
adaptability makes it a good candidate for a Problem
wide range of combinatorial problems. This
research demonstrates a Java implementation
and analyzes the performance of it in a Windows The Blackhawk is an Unmanned Combat Air
2000/Linux Redhat 6.2 Heterogeneous network. Vehicle (UCAV). Since it is unmanned, it can

be built smaller and designed to take
Keywords: Pile of PCs, Particle Swarm gravitational forces in a way that a human simply
Optimization, Traveling Salesman Problem, couldn't stand. Its mission is reconnaissance. It
Linux Redhat 6.2, Windows 2000, Parallel flies at a constant height above enemy territory
Algorithms, Evolutionary Computation and gathers data using various antennae.

I Introduction & Mission planning for the Blackhawk iscomputationally challenging. In what way do

Background Information you fly the Blackhawk over the territory to
obtain the data? It is desirable to travel the
shortest path, since that path will allow us toEach and every master's student at AFIT is obtain the data swiftly, minimize flight time thus

required to conduct research and work on an "Air min the psibly oin ght down by
Forc" rlate prblemto atisy hs orher minimizing the possibility of being shot down by

Force" related problem to satisfy his or her enm fiaswlascsungesfe.

"thesis" requirement. Like most students, many Given a set of coordinates (either from earlier

projects are undertaken with this goal in mind. satellite or Blackhawk mission reconnaissance),

The selection of this problem is intended to "kill mission planning is then easily mapped to the

two birds with one stone." Obviously the first ever-popular Traveling Salesman Problem (TSP)

reason is to fulfill the Distributed Operating -awell-known NP-complete problem.

Systems (CSCE 689) coursework requirements

while the second is merely to provide additional PSO is inspired by the way swarms of insects,
insight and understanding of particle swarms and though individually not very intelligent, can

produce nearly optimal solutions to highly
Submitted in partial fulfillment of the complex problems. Experiments have been
requirements for the Master degree at the Air shown where ants (yes, the real insects) have
Force Institute of Technology, Wright-Patterson been placed in an environment with an anthill
AFB OH. and nearby food. The paths they followed to the



food were nearly optimal. In fact, think of the The program is designed in the following
food and anthill as cities and suddenly the ants manner: each computer executed the serial

are finding solutions to TSP. software virtually unchanged. When a new best
solution (for that computer) was found, it sent

1.2 AFIT Parallel Lab this to its neighbor. When a new best solution is
received from a neighbor, information from the
solution is used to further direct the search. The

The AFIT laboratory consists of a Pile of twenty- efficiency, effectiveness, speedup, scalability,
two computers, ranging from 333MHz to and quality of solutions of this software and are
600MHz. Each system, with the exception of the discussed later.
two servers are dual (Linux Redhat 6.2/Windows
2000) bootable. The communications backbone 1.4 Communications
is capable of 100Mbps via two Myrnet 100
MBps Fast Ethernet switches (that are
interconnected via one-gigabit switch. 1.4.1 Packages

1.3 Source Code Java is a true object oriented language unlike
C/C++, which is hybrid and has built-in support
for multithreading and synchronization of

We obtained a copy of a C++ serialized version multiple threads.

of the PSO software tailored to solve a TSP
problem and modified it for a previous class toutilem the mPo communiforatreios softe MPIPro consists of a set of library functions thatutilize the M PIPro communications software c n b i k d t n s rg a r vd ncan be linked to ones' program providing a
libraries in a homogenous operating system means of communicating between computers so
environment. While we could have modified the
code to make it run in a heterogeneous they mayexecuteparallelprograms.
environment, the effort would have required us
to install new software and implement a crude 1.4.2 PSO Communication
form of inter-processor communications via file Methodology
I/O. A previous AFIT student, Captain Chris
Bohn, implemented a heterogeneous parallel The original version of the PSO software was
program by using MPI software and an agreed serial in nature and required no communications
upon file with a predetermined data format. The serilit.
file was both written to and read by each process. capability.
His MPI heterogeneous effort was accomplished
in the AFIT parallel lab where each system is The MPI modified version, the work done in a
dual boot into either Linux or Windows 2000. previous class, used MPI library routines to

simulate a logical ring network--starting node is

We thought seriously about taking this route 0, and passes info to node 1, node 1 passes info

which, on one hand would have made the coding to node 2, etc. with the last node passing

considerably easier--our code was already information back to node 0, the starting node.

programmed using MPI and C++, we'd have just
had to add file 10 and a few other MPI calls to Our initial intent was to imitate the MPI version
identify cross-platform machines that were going of the ring; however, we found out the hard way
to run the PSO software-but we decided/opted that it is very difficult for Java to set up both
not to do that to learn more about Java and to client and server on each processor-while it can
avoid some of the difficulties that Captain Bohn be done, it is not a simple matter and thus we
had when he implemented cross-platform decided upon a client-server configuration that
parallel, MPI-based software. As a result, we simulates a logical ring by having the server
morphed the C++ code into Java to take receive info form a given node and passing it on
advantage of the fact that it runs cross-platform, to the next "logically higher numbered" node,
has built-in communications capability, and isn't with the last passing to the first in the ring.
too dissimilar to C++.

The PSO server is started and waits for a pre-
specified number of clients to register. Once all
clients have registered the processors are allowed



to start working on the TSP problem at hand. 5) C2 - A percentage of the number of
The server listens on each respective port and "steps" in a velocity to be used. A
passes along any new "best" solution found. As measure of how much a particle
clients register and deregister with the server this "trusts" its neighborhood best velocity
process is continued until a predetermined (VB).
number of generations have occurred or some 6) Pig,t - The neighborhood (from i to g)
other criteria is met. Upon completion, all clients best particle
once again report in to provide the server their 7) "-" - The difference of two particles is
best solution and the server reports the final the velocity that will transform the
results. second velocity into the first velocity

8) Xt - The current particle
2 Software Methodology 9) "+" - The transformation of a particle

using the velocity (yields a particle)
10) Xt+ - The "moved" particle. The

2.1 PSO Algorithm particle of the next generation.

2.1.1 Serialized PSO Algorithm 2.1.2 Parallel PSO Algorithm

PSO-TSP uses particles (referred to as the The following define the steps taken by the

Particle Swarm) to represent potential solutions. parallel PSO algorithm.
A Velocity (V) is a step-by-step mapping of a
particle to another particle. Each particle has an 1. oRando ali he ar ts
associated velocity. The Velocity Best (VB) is a velocities on all processors.
velocity that maps a particle to the best particle 2. Determine new particles by applying V to
in the swarm found so far. In each generation, each particle.
each particle is transformed to another particle 3. Determine the best particle (including the
using a combination of its V and VB. A "no- prior best particle, as well as any particles
hope" condition causes a re-initialization of the passed by other processors).
swarm to prevent early convergence to a local 4. If VB for a given processor is a better
optimal solution. The Swarm moves and solution than the prior VB, pass this particle
explores the search space according to the to neighboring processor via the server.
following equations: 5. Determine a new V for each particle using

the old V and VB.
6. If the number of desired iterations is

= C1 V1 @ C2(Pigt-Xt) reached, return the best particle. Else if pre-
Equation I - Calculating a Single Particle's convergence occurs (a "no-hope" condition

New Velocity representing having found a local optima),
go to step 1. Else go to step 2.

Xt+l = Xt + Vt 2.2 Lab Configuration
Equation 2 - "Moving" a Single Particle in a

Swarm While the AFIT laboratory has 19 systems with
20 processors (1 dual processor machine), we

Where: intended on using only use the eight 600MHz
processors; however, one of the systems was

1) Vt+± - The particle's new velocity for inoperable and as a result our tests we done on 2,
the next generation 4, and 6 machines only. Note: Our initial

2) C1  - A percekiage of the number of decision to only use 8 machines was based on
"steps" in a velocity to be used. A the fact that the previous version of the PSO
measure of how much the particle software was only tested on eight machines. By
"trusts" its own exploration, keeping this number the same we hope to be able

3) V1 - The particle's current velocity to draw viable conclusions about our findings.
4) E - The concatenation of velocity

steps



For test purposes we will assume our laboratory A "probe" message of two integers is sent when
has only six 600 MHz PIll processors running a client doesn't have new results, and one integer
Windows 2000 (with a separate dedicated is received when there was no results to pass on.
domain controller) on a 100 Mbps Intel Fast
Ethernet Crossbar Switch. There will be no 3 Approach
other user processes running on any of the other
systems that will "steal" communications
bandwidth. These computers can be used to 3.1 Design of Experiment
perform parallel computations under the MPIPro
software package. Previous work has shown the
start up time (overhead for creating a message to TSPLIB is a library of known TSP problems
be sent) is 6.2e-5 sec, and the message transfer used as a benchmark. While the previous
rate (time per word for sending a message) is 5.9 version (the MPI version) was run against four of
e-4 sec. Since message transfer rate dominates the TSPLIB problems, we opted to only test out
start up time by an order of magnitude, start up the Java version on a single TSPLIB problem-
time may be neglected. the idea for this project is to demonstrate the

implementation in an O/S heterogeneous
2.3 Mapping the Algorithm environment. The test was run five times on

two, four, and six processors. Metrics looked at
onto the Hardware were time to completion vs. # of processors,

overall effectiveness of the algorithm vs. # of

The software communicates its results to its processors, and time to converge vs. # of
neighbors indirectly by sending a solution to the processors.
multi-threaded server and the server will provide
that information to the next "logically higher 4 Results & Analysis
numbered" node in the logical ring. The size of
a solution is the number of cities (29 integers for 4.1 Output Screens
bays29.tsp). The logical arrangement of the
processors is in the format of a star-i.e. the
server is the hub and each client must
communicate with the hub only. Each processor N' - W,,5Aw l ob, . .

is therefore running nearly independently, with 0 i ,i.
very minor communications. This approach to
parallelization of stochastic algorithms is known ,ostral ,, U i ABC-41

as the "island" method due to each processor's
independence. 1e 4 -nx

line1 = -B

Other logical configurations than the ring could li .n A -B7
have been used; however by only Con, tiner pat 3O0CT ,t1119 return lite fo: t i, ,irol

communicating when a client has found a new C'00 .0 re nine for, irox t I
Crwtiqg a return In fo t A froibest the amount of communications can be kept Cetir9 a rtn lino ,o, a $1
cm~tirng a r'ehu line fo. $ L 4 1to a minimal-remember, the server will only Aain, a retub lit , $ 2, 11Cotig a rtun 11 for 1 2: io,,

pass along the global best when a client Cm-i a reurn .i *nee n lf
r , tig a reurn li for 1 1. , 0 t

communicates it's latest best. It has been shown rtiq a return It for 1 .",1
that higher connectivity between islands results eaing a rn li an ;o. 1 t :. Ir e a t i g a r t u r n l i t e f o r I 2 ! l
in few er iterations per processor for t r tTih e I'M flo .n 1 11

convergence. While faster convergence may Cing a retun lin, fon for, Acreating a return line for I ir. I I

seem desirable, it may result in poorer solutions Creating aretrn line to: I rna 1
Crating a'turn line for A T I Adue to pre-convergence of a local optima. Also, .tnn a retur lite .0 ot A, o,, 2

-tr lt for t 0 Ireal performance of parallel algorithms depends ne, n I n. o
Cilin a reman An A At I 2

on maximizing processing and minimizing arA., Anna inn A . n 2

communications. The star configuration was
selected as a result of limitations of the Java
programming language and the fact that it
doesn't do non-blocking communications well. Figure 1 - Server Output
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Figure 2 - Client Output Figure 4 - Client Output - Receiving Solution
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4.2 Results Solving TSP with Swams

File MPI Java Optimal Z 4000 --- 2 -Processor
PSO PSO 0 30o

'
-00 Processors

M- 2000--- Pr.. ..
Best Best 206 Processors

2/4/6 0
Processors

Brl7 86 --- 39

Bays29 2142 2379/2260/2033 2020 Generations

Ftv33 1687 --- 1286. . ..........

P43 5752 --- 5620 Figure 7 - Solving TSP with Swams

Table 1: Comparison of Solutions This figure compares the performance from each
(Only Rays29 Tested) of the 2, 4, and 6 processor runs. From the start,

6 processors clearly is more effective in solving
It appears that the more processing power used the problem. On the other hand, it is clear that as
to solve the Bays29 TSP benchmark, the better the number of processors are increased, the
the solution found. Of course this makes entire average number of generations used to solve the
sense because we are able to explore and exploit problem increases, which in turn, results in an
far more with multiple processors than with a overall increase in computational time (see Table
single one. It would be interesting to see just 3).
how well the algorithm performs against the
other TSP benchmark problems, as well as, the Number of Average TSP Average # of
performance of the swarm once other Processors Cost Generations
enhancements are incorporated into the
algorithm. Should the algorithm prove fruitful, 2 2552.5 10956.7
the next step would be to run it up against larger 4 2442.3 12254.7
TSP benchmarks. 6 2266.5 14665.8

Table 3 - Average TSP Cost & Generations

Worst/Best TSP Results
4.3 Efficiency

5000

4000 " 2 Processor Best

0. 004 Processor Best Efficiency is the measure of how much work
a.2000 - - - - - -

3000 '-U-6 Processor Best
1000 B Pro.essor Best (time spent doing calculations) is being

0 .. 2 Processor Worst performed compared to the overhead of sending•--1(--4 Processor Worst pefrecoprdtthovhadfsnig
t.b ' < - 4-- Pro ssor Worst messages. By design, this algorithm is efficient.

Generation The message size is small, and messages are only
_passed when a new optima is produced. It was

Figure 6 - Worst/Best TSP Results observed that all processes sent several messages
(up to four) within the first second. After that,

This figure demonstrates that from the get-go messages came about once per processor per five
results obtained from generation to generation seconds. With so little message passing,
tend to be better as additional processors are efficiency is high.

used to solve the problem. Again common sense
tells us that the more work done to solve the 4.4 Scalability
problem, the better chances of solving it. From a In this context, scalability has two aspects. 1)
Genetic Algorithm point of view, the more Can we use even more processors, and if we do,
processors used to solve the problem the more will the solution generated be "better" (either
landscape is searched in finding the solution, faster or more precise). 2) Can we throw even

larger problems at it? To answer the first
question, yes, it is scalable. The Island approach
allows you to use as many processors as are
available without seriously affecting efficiency.
While the quality of solutions does improve with



more processors, the time to produce solutions interpreter (Intptr), and the just-in-time (JIT)
will generally increase as more processors tend Java interpreter/compiler.
to find better solutions for a longer period of
time and as a result keeps the algorithm going- Java Elapsed Mode
as the termination is based on not obtaining a a
"new" best within a specified number of Implementation Time

generations. Sun JDK 1.2.2 4815 Intptr
Sun JDK 1.2.2 4973 JIT

The second question is trickier. In theory, we Blackdown 1.2.2 4869 Intptr
should be able to use any size problem. Blackdown 1.2.2 4123 JIT
Attempting to use problem sizes of greater than Blackdown 1.1.6 7356 Intptr
fifty cities resulted in stack over-flow errors for Blackdown 1.1.6 6207 JIT
the original serial version. While it wasn't Cygnus Codefusion 2854 Native
tested, the Java version should not have this Table 4 - Java Benchmark Results
limitation and should be able to handle problem
sizes near 32,000 cities. It is clear from the preceding table that native

code is far superior to Java, but is also clear that

5 Conclusions not is Java is equal--at least with respect to
execution time.

5.1 Java Implementation In a nutshell this means that running in a

Performance on Different heterogeneous environment "should" have a
negative affect of running different flavors of

Platforms Java that have different performance specs.

In an attempt to provide additional insight into We demonstrated that a means of using a Particle
the overall operational speed of Java on different Swarm in a heterogeneous parallel environment
platforms, we pulled up a recent article in the is reasonably successful. Most of the problems
August 2000 issue of Linux Journal entitled the algorithm could handle were too trivial to
"Comparing Java Implementations for Linux". present a challenge. With two processors, a
The author discusses his "home made" solution was found usually under a second. For
benchmark and readily admits that it doesn't the most difficult problem the algorithm could
cover all aspects of the language but in does do handle, we demonstrated that more processors
what most object oriented programs do and that did slightly improve the quality of solutions
is create objects and call methods from that and/or the time needed to find the solution. In
object. The benchmark creates 500,000 objects all cases, the Swarm proved it could find good
and calls a method of that object. The results are solutions to the TSP, but it doesn't perform as
the elapsed time--the total time to create and call well as other more specialized algorithms. To
a method half a million times. remedy this, further study needs to be done to

determine the best means in which to pass
The table below is an abbreviated version found "good" information about what makes a good
in the article and merely shows elapsed time solution good.
between running the benchmark application in
Java code via a compiler or via a just-in-time References
(JIT) interpreter/compiler and finally in a C++
natively compiled code. It must be noted that the
benchmark was run on a homogenous operating Bailey, Glenn and others, Unmanned Aerial
system platform and on a single 233MHz CPU Vehicle (UAV) Route Selection Using Reactive
with 128 Mbytes of RAM under Red Hat Linux Tabu Search. Military Operations Research,
6.1. 1999.

Note: The benchmark does not address Bohn, Chris, CSCE 689 Distributed Operating

communications but instead compares the Systems, AFIT School of Engineering, 1999.

performance of the native compiler, the
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Communication in Particle Swarm Optimization

Illustrated by the Traveling Salesman Problem

Barry R. Secrest Gary B. Lamont
Air Force Institute of Technology Air Force Institute of Technology
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Abstract It is easily believed that the
equations for Particle Swarm 1 Introduction
Optimization (PSO) define a specific
algorithm. In fact, the equations alone Particle Swarm Optimization is inspired
provide merely the communication by swarms of insects [Kennedy].
pattern, with some of the algorithm Though individually not very complex,
details determined by the equation sub- they can produce nearly optimal
definitions. It has been demonstrated solutions to highly complex problems.
that Particle Swarm Optimization Experiments have been presented where
provides good answers to many ants have been placed in an environment
optimization problems including the with an anthill and nearby food
Traveling Salesman Problem (TSP). We [Beckers]. The paths they followed to
present a revised PSO algorithm the food were nearly optimal. This lead
inspired by the Ant System (AS), thus to using ant foraging behavior as a
demonstrating that the original PSO computational problem-solving method
equations themselves do not define the [Dorigo].
algorithm.

This paper analyzes the Section two of this paper discusses the
differences between these PSO TSP, a Particle Swarm Optimization
algorithms. The nature of Swarms is algorithm (PSOTSP) presented by
revealed, allowing others to more easily [Clerc,] and an algorithm known as the
construct generic Swarm algorithms. Ant System (AS) as presented by

[Dorigo] and used to solve the TSP.
Section three presents a new algorithm

Keywords: Particle Swarm Optimization, (PSO AS) in detail that synthesizes
Traveling Salesman Problem, ideas from both PSO TSP and AS. An
Evolutionary Computation, Ant System example is given to illustrate how

PSOAS works. In section four, an
experiment is conducted to empirically
illustrate how PSOAS converges
compared to PSOTSP. Why this

Submitted in partial fulfillment of the algorithm works is explored and
requirements for the Master of Electrical discussed in section five to aid others in
Engineering degree at the Air Force Institute of constructing generic Swarm algorithms.
Technology, Wright-Patterson AFB OH.



Conclusions and future work are Euclidean. It is also possible for a
discussed in sections six and seven matrix to be triangular and asymmetric.
respectively. Other matrix classifications include

Kalmanson, Demidenko, or Supnic
conditions, which are trivially solved by

2 Background looking at the plot of the points.

Problem complexity is often related to

2.1 Travelling Salesman matrix classification. For Kalmanson,
Problem Demidenko, and Supnic matrices,

optimal solutions can be generated in
The Travelling Salesman Problem (TSP) polynomial time. ATSPs are easierThe Trein a ollesmaGven ob (TSPbecause the triangular relationship is
istdfned arix C = c) folv n d nused heuristically to produce solutions.

distance matrix C = (cij), find a

permutation, r c Sn that minimizes the Symmetric TSPs are easier than
sum - + 1) + cf(n)7r(1) asymmetric because a multi-city path

= i can be reversed (inverted) without

[Lawler]. The Salesman must visit all having to recalculate the path cost.
cities from 1 to n exactly once in such a Also, of all possible tours, there are
way to minimize the distance traveled, twice as many solutions (the forward
It has direct, real-world application to tour and the backward tour), thus only
routing problems in general (mail or half of the search space needs to be
other kinds of delivery), and as a NP searched to find the optimal solution.
complete problem has indirect relevance Euclidean TSPs are considerably easier
to many other real-world problems. It is to find good solutions for, yet no
undoubtedly the most famous NP polynomial algorithm has been
complete problem. discovered to find the optimal solution.

The problem is often classified by The Lin-Kernighan algorithm is the most
characteristics of the distance matrix. In efficient heuristic method for finding
symmetrical TSPs, cij = cji, thus all good solutions to the TSP known to date,
values in the matrix are symmetrical but doesn't work as well with
through the diagonal. If it is not asymmetric TSPs. Perhaps the most
symmetric, it is asymmetric, efficient stochastic method is the inver-
In triangular TSPs (ATSP) over operator [Tao], which may produce
Vi,j, k G C: c, < cij + Cjk, thus given the better solutions than Lin-Kernighan, but
distances between any three cities, a requires more time. It is limited to
physical triangle can be formed to working well only for symmetric, ATSP.
represent those three cities' distances. For further information, see the book by
In Euclidean TSPs, [Lawler].

Vi,j C:c= - (ai- aj) 2 -(bi- bj) 2 , 2.2 Particle Swarm Optimization
thus the cities can be mapped to a
physical grid. Euclidean TSPs are both A Swarm is a collection of particles. A
symmetric and triangular, but these particle has both a position and a
characteristics alone do not imply velocity vector. [Kennedy95] gives the



"classical" PSO equations (see variants [Clerc99], and applying to
Equations 1 and 2) where the position specific problems [White, Carlisle,
and velocity vectors represent physical Chapman].
attributes of the particles. Equation 1
adjusts the particle's velocity so that the [Clerc] uses the same equations, but
particle will move toward the position of redefines the meaning of position and
the neighborhood and global best. velocity to produce good solutions to
Equation 2 applies the new velocity to TSP in the PSOTSP algorithm. This
the current position for a single "time re-definition is needed to reflect the
period" or generation. Together these terrain that will be searched. The
equations form simple vector addition. standard definitions work great in an

integer or real-valued terrain, but have
no meaning in the permutation terrain of
the TSP. In PSOTSP, positions

V, represent potential solutions (a list of
C(VIJX) C2(Pi,.t-Xt) cities). A Velocity (V) is a list of

y New Position permutations applied to a particle. Each
V1, Global Best particle has both a position and an

Crrent -,Position associated velocity. The Velocity Best
Position

Local Best (VB) is a velocity that maps a particle to
Pi"-xt Position the best particle in the swarm found so

far. In each generation, each particle is
transformed to another particle using a
combination of its V and VB. A "No-

Figure 1 - Illustration of "Classical" PSO hope" condition is meant to detect early
convergence to a local optimal solution.

The nature of these equations is Possible "No-hope" conditions are all

analogous to planetary bodies orbiting a particles in the swarm within a given
distance of the best solution, or a certainsun, but is inherently stable. Under nubr o gerais wtht

these equations (and given appropriate number of generations without
coefficients), all of the particles in the discovering a new best solution. When a
swarm "gravitate" toward the best "No-hope" condition is met, the swarm

swar "gaviate towrd he est is re-initialized to random positions to
solution found so far. This produces a re more eoratio tus t

local search. It is inherently stable

because as the particles get closer to the Swarm moves and explores the search

best solution, there is a weaker pull space according to Equations 1 and 2.

toward it, thus guaranteeing each particle
converges (or orbits) near the best
solution. This differs from the orbiting Equation 1 - Calculating a Single Particle's

analogy since planetary bodies have a New Velocity

stronger pull toward the sun as they get Vt+l = Ci1Vt C2(Pig,t -Xt) ( C3(Pvg,t-
nearer to it, thus are likely to be "flung" Xt)
away from the sun in a slingshot orbit.

Recent work involves parameter tuning
[KennedyOO, Kennedy99], creation of



Equation 2 - "Moving" a Single Particle in a 3. Determine the best particle as the
Swarm one with the shortest tour.

Xt+ = Xt + Vt+1  4. If the best solution in a neighborhood
is a better solution than VB, save this

Where: solution as the new VB.
1) Vt+l - The particle's new velocity 5. Perform steps 2-4 as above until

for the next generation there is no improvement in the global
2) C1 - A percentage of the number of VB for a set number of iterations

"steps" in a velocity to be used. A (other ending criterion may apply).
measure of how much the particle At this point, we have converged to a
"trusts" its own exploration, local optima and have "No-hope" of

3) Vt - The particle's current velocity, finding better solutions. Several
A list of permutation steps. methods may be used to find better

4) @ - The concatenation of velocity solutions such as simply starting
steps. again from step one without

5) C2 - A percentage of the number of initializing the global best, or using a
"steps" in a velocity to be used. A local search heuristic on the particles
measure of how much a particle and performing steps 2-4.
"trusts" its neighborhood best 6. Once all "No-hope" methods are
velocity, exhausted, return the best solution

6) Pig,t - The neighborhood (from i to found.
g) best position

7) "-" - The difference of two positions 2.2.2 PS0_TSP Example
is the velocity that will transform the Moving a Particle
second position into the first position

8) Xt - The current position Let's look at an example of the way that
9) C3 - A percentage of the number of PSO TSP moves a single particle:

"steps" in a velocity to be used. A
measure of how much a particle Let:
"trusts" the global velocity. X = { 1,3,5,4,2,1 }

10) Pvg,t - The global best position Vt= {(3,5),(2,4)}
11) "±" - The transformation of a = = = 0.5

position using the velocity (yields a Pi,t = { 1,3,4,5,2,1 }
position) Pg,t = (3,4,2,1,5,31

12) Xt+1 - The particle's new "moved"
position. The position of the next From Equation 1:
generation. Vt+1 = C1Vt + C 2(Pi,t - Xt) + C3(Pg,t - Xt)

= 0.5{(3,5),(2,4)} + 0.5 {(4,5)} +
2.2.1 PSO-TSP Algorithm 0.5{(3,1),(4,1),(2,5)} = {(3,5)} + {(4,5)}

+ {(3,1),(4,1)} = {(3,5),(4,5),(3,1),(4,1)}
Following is an outline of the PSOTSP
algorithm: Note that the list of permutations swaps

cities, thus (3,5) means that city 3 is
1. Initialize the positions and velocities, swapped with city 5.
2. Determine new particles by applying

Vt+ to each position (Equation 1,2). From Equation 2:



X t+I = X t + V t+ I {3,1,4,5,2,3} (see 2.2.1), but the meaning behind
applying the equations in step 2 alters
the way the algorithm performs this step.

2.3 Ant System (AS) When a particle is in a given city, it
generates a random percentage. This

[Dorigo,Stutzle] describe an algorithm percentage determines if the particle
inspired by ants that can find solutions to attempts to follow the global best, the

TSP. In this algorithm, a population of local best, or takes a pseudo-random
ants creates a tour in a step-by-step path based on the particle's position
process. When an ant is in a given city, before commencing a new tour. If the
it examines the pheromone levels global best is chosen, the cities in the
leaving its current city and going to global best (adjacent to the city the
cities that the ant has not yet visited, particle is currently in) become the first
The pheromone levels are used to choice. In the case of asymmetric
determine the probability of the ant problems only one choice is allowed. If
traveling to its next city. A higher the global best choices are available (i.e.,
pheromone level has a higher probability they have not yet been visited in this
that the ant chooses that path. After all tour), one is chosen (at random) and the
ants have completed a tour, the ant with particle proceeds to that city. If there is
the best fitness value is allowed to lay no available global choice, or if local
down pheromone. Variants typically best is selected, the local best position is
involve the selection of ants that get to used to determine possible choices in the
lay pheromone, the types of pheromone same way as the global best was as
(reward and punishment), and the outlined. If the local best choices are not
amount or weighting of pheromone used. available, or if the "default" method is
Ant Colony Optimization (ACO) is an chosen, the most recently visited city
example of a variant based on (last if possible) from the particle's
pheromone weighting. In ACO, the trail current position that has not yet been
with the highest pheromone level has a visited is chosen.
large weighting and is highly likely to be
picked. 3.2 Redefinition of Equation 1

3 PSO - Inspired by Ants and 2 Terms
(PSOA S)

Equation 1 and Equation 2 define PSO

3.1 Description and require the use of the global and
local best in the search process. While

This algorithm combines the ideas PSOAS uses Equation 1 and Equation

presented previously. As in AS, the 2, the following redefinition of terms is

particles are moved in a step-by-step required to describe the new algorithm.

process to create a tour. Unlike AS, a
table of pheromone levels is not kept. 1) Vt+i - The particle's new velocity
Instead, choices are based on the global for the next generation. A
best particle and the local best particle as summation of step-by-step choices
in PSOTSP. In fact, the algorithm is that generates a new position.
identical to that presented for PSOTSP



2) C1 - A probability of selecting to 6) Pig,t - The neighborhood (from i to
use information of the prior tour in g) best position
creating the new tour. A measure of 7) "-" - The difference of two positions
how much the particle "trusts" its is the velocity that will transform the
own exploration, second position into the first

3) Vt - The particle's current velocity, position. This velocity is equivalent
A particle's velocity and position to the first position, thus Pig,t -Xt =

contain redundant information. Vig,t •

4) D - denotes local choices made 8) Xt - The current position
based on the probabilities. C1 + C2 + 9) C3 - A probability of selecting to use
C3 = 100%. information of the global best. A

5) C2 - A probability of selecting to use measure of how much a particle
information of the neighborhood "trusts" its global best.
best. A measure of how much a 10) Pvg,t - The global best position
particle "trusts" its neighborhood
best.

11) "" - The transformation of a Let's look at an example to illustrate
position using the velocity (yields a how PSOAS works.
position). Since the velocity Given a TSP problem where:
contains redundant information with
the position, this step is inherent. Xt ={2,4,6,5,3,7,1 }

12) Xt+l - The particle's new "moved" Pvgt = {3,7,6,4,5,1,2}
position. The position of the next Pig,t= {7,6,2,3,5,4,1}
generation. C1 = 10%

C2 = 10%
C3 = 80%

3.3 Example: Moving a Particle Random numbers generated = {60, 82,
87, 26, 94}

Xt+l= { 1,2,3,5,4,7,6}

Global Best
Current Position

3

4

Figure 2 - Pvg,5
Figure 1 - Xt



2 is chosen since it follows city 1 in the

Local Best global position. If the problem were
symmetrical, city 5 may have been

3 . chosen instead since it precedes city 1.

2 4 Step 3
Local path

Cose pat Global path
StartChs 

pa2@5 6)4

Figure 3 - Pig,t Start I Default npath - 7

6

Step 1
3 •Figure 6 - Step 3

2 5 04 Step 3 (Figure 6): Since 82 is greater

than C3 but less than C3 + C2, the

Start I 4 7 neighborhood information is used. City

6 3 is chosen since it follows city 2 in the
neighborhood position. Note that when
both the global and neighborhood

Figure 4-Step I positions contain the same paths, the
probability of continuing to follow that
path is equal to C3 + C2.

Step 1 (Figure 4): The default method is

always used to select the starting city,
thus city 1 is chosen since it is the last
city in Xt. Step 4

3 Local path

hosen path

2 5
Step 2 Global path 4

Start I Default path 7

Chosen pat

I/ Global path

Start I 7 Figure 7 - Step 4
O6

Local path Step 4 (Figure 7): Since 87 is greater
than C3 but less than C3 + C2, the

Figure 5 - Step 2 neighborhood information is used. City
5 is chosen since it follows city 3 in the

Step 2 (Figure 5): Since 60 is less than neighborhood position.
C3 , the global information is used. City



Step 5 Step 6

33
LocalGlobal path

2 5

/Globalpath Chosen path Chosen pat Default path

Start 1 7 Start I Local path

6 Default path Q 6

Figure 8 - Step 5 Figure 9 - Step 6

Step 6 (Figure 9): Since 94 is greater C3
Step 5 (Figure 8): Since 26 is less than + C2, the prior tour information or
C3 , the global information is used. City default is used. City 7 is chosen since it
1 follows city 5 in the global, but cannot is the last in the list that has not already
be chosen since it has already been been included in the tour. City 1 was
included in the tour (Step 1). We included in Step 1.
therefore attempt to use the
neighborhood information. City 4 is
chosen since it follows city 5 in the Step 7
neighborhood position. If a
neighborhood position's information 33

cannot be used because it has already
been included in the tour, no attempt is 5
made to use the global information.
Rather, the default information is used. Start I Chosen path 7

Note that when neighborhood C

information is used, the probability of the tour

continuing the path when the global
information has already been included in Figure 10 - Step 7; Xt~j
the tour is equal to C3 + C2, thus greatly
increasing the chances of using the Step 7 (Figure 10): Since city 6 is the
neighborhood information, only city which has not been included in

the tour, it is selected.

While the example demonstrates finding
the solution, such is not necessarily the
case. The new tour is built from
particles that has survived, so the new
tour is also likely to be good.



4 Experimental Approach global best and neighborhood best in
moving the Swarm. Both stop after

4.1 Purpose of Experiment moving the swarm 600 times without
any improvement in the global best

Since we have discussed two PSO solution. Neither use a re-hope method.

algorithms, it may seem that we should P50_AS used values of C1 = C2 = 10%,and C3 = 80%. These values were
compare and contrast them to determine cn to e ifmo o the
which is the superior. That is not our coe oepotifraino h
whichs. te ispmer. Tato int our global (C3 ) and provide a fair amount of
purpose. We wish merely to point out exploration (C1). No work was

that communication makes a difference

in outcome, and to determine the performed to tune PSOAS, so other

properties of a Swarm to enable easier values of C1 , C2 , andC 3 may produce
better results. Three problems weredevelopment of Swarm algorithms, selected at random from [TSPLIB], and

S p e c i f i c t u n i n g o f r e -h o p e m e t h o d s a n d s e l e ( b r l 7 .a t s p )d w a s e l e c t e d b e c a u s en i

re-hope/ convergence criterion can ewas used by [Clerc]. All of these were

drastically alter results. Both quality and executed five times to produce

speed of solution are improved. We representative results. The metrics

desired to observe both algorithms collected to demonstrate differences are

without these tuning parameters to current best solution, the time of finding

assess each algorithm's ability to the current best solution, and the number
converge. Furthermore, we found that thcurnbetslioadheumr
convimlerge.nFurthemor, we f d hat of iterations completed at the time that a
the implementation of PSOTSP cannot

- new best solution is discovered.
handle problem sizes greater than 50
cities. This is due to the underlying 5 Results & Analysis
structure causing stack overflow errors,
not the algorithm. We therefore decided 5.1 Results
a competition would be pointless since
problems of such small dimensionality
are solved relatively easily by brute- Table 1: Comparison of best Solutions.
force or heuristically by other methods File PSO PSO Optima
such as Lin-Kernighan. -TSP _AS

Brl7.atsp 88 82 39
Bays29.tsp 2848 2067 2020

4.2 Design of Experiment Ftv33.atsp 2261 1563 1286
P43.atsp 6056 5729 5620

In order to meet the purposes of the
experiment, both algorithms are
executed with 16 particles and a Table 1 shows that PSOAS converges
neighborhood size of 4. These values to a better solution (see analysis). It
are selected because they produced the should be noted that in all cases the
best results in PSO TSP [Clerc]. Except worst solution was within 5% of the best
as noted below, all other parameters solution. As mentioned previously,
were default parameters recommended parameter tuning and re-hope methods
by PSOTSP. Both randomly initialize improve the quality of solutions in both
the Swarm (PSO TSP was slightly algorithms (PSOAS typically finds the
modified for this purpose). Both use the optima for these small problems in a



matter of milliseconds), but were equivalent to a mutation operation on the
purposefully excluded to compare the global best particle where the mutation
swarm's native ability to converge, always occurs at the end of the position.

If we were to let (C1 = .2, C2 = 0, C3 =

Table 2: Comparison of average time .8), we are then mutating even farther
(sec) to converge and average iterations away. While PSOTSP does exploit the
at convergence, information provided by the global best,
File PSO-TSP PSOAS there is no mechanism to allow it to

Time Iter. Time Iter. exploit the right information.
Brl7.atsp 22.4 372 .019 45
Bays29.tsp 21.8 327 0.19 178 This insight lead to the development of
Ftv33.atsp 37.8 451 0.56 428 PSOAS. It is specifically designed to
P43.atsp 81.3 742 1.04 544 exploit the information in the global and

local best regardless of where that
Table 2 shows that PSOAS converges information may be. By randomly
faster (fewer iterations) and is more choosing to follow the global best at
timely than PSOTSP for these TSP each node, it is likely that different
problems. particles will explore around the global

in different areas.
5.2 Analysis What makes a swarm a swarm? If we

Empirically, PSOAS runs about 80 look to nature such as bees or ants, we
- see many individuals that collectively

times faster per iteration than PSOTSP. see m anyndida that Ec- perform "astounding" feats. Each

PSOAS also finds better solutions. Our individual contributes and performs their
early work with PSO TSP (with function without being aware of the

P (overall goal. Certainly, each individual
parameter tuning and re-hope methods) is not capable of producing solutions.
produced good solutions, but not good Yet, what enables the swarm to produce
enough (typically between 5 and 10% of its solution? Also inherent in a swarm
the optima). To improve solutions, weexamined how the swarm moved. Our (but less easily observed) is some form
concluin ow thsa PSoved Our dof communication between membersconclusion was that PSOTSP didn't that guides the individual in its choices.
exploit the information present in theglobal best solution or the local best Bees can see each other as they fly
globalbetsolution l eo h u e aet [Insect]. The speed, direction, andsolution w ell enough . Suppose w e arep o i i n f ne r y b s a f ct h e l g t
moving a particle and fully trust the position of nearby bees affect the flightglobal best, don't trust the local best, and path of individuals. Ants lay down
don't trust the individual position (C1  pheromone to communicate past paths

0, C 2 = 0, C 3 = 1). In this case, moving [Beckers]. Subsequent ants sense thethe particle would result in the global pheromone levels and choose their path
the artcle oul reslt n th glbal based on this local information.best. Now, let's suppose we only partly

trust the global solution (C1 = 0, C2 = 0,
C3 = 0.8). In this case, moving the Both PSO_TSP and PSO_AS are
particle would result in the first 80% of swarms. P0o requires particles in thethe cities being identical to those of the swarm to "communicate" with the global
globaltest. Thusing aparticlltothos te i and a local best particle (although otherglobal best. Thus, moving a particle is



swarms may have broader best way to exploit the communication
communication schemes). The for a specific problem.
difference between PSO TSP and
PSOAS is not the communication 7 Future Work
pattern, but how that communication is
being used. PSOAS was designed to We need to tune PSOAS with many
better exploit the information in the parameters (initialization, re-hope
global and local best particle. With high methods, ending criterion). We also will
probability, a good sequence in either compare PSOAS with heuristic and
the global or local particle remains other stochastic methods available to
intact. demonstrate that PSO AS is a viable,

competitive TSP algorithm that has

6 Conclusions performance advantages.
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